学年

質問の種類

数学 高校生

常用対数 (2)が分かりません( ˘•ω•˘ ).。oஇ そもそも何進数っていう言葉の意味や考え方からあんまり理解できてないのでそこについても説明していただけるとありがたいです😭 ご回答よろしくお願いします🙇🏻‍♀️⸒⸒

304 基本 例 189 常用対数と不等式 logo3 0.4771 とする。 (1)3が10桁の数となる最小の自然数nの値を求めよ。 00000 (類福岡工 (2) 3進法で表すと100桁の自然数Nを, 10進法で表すと何桁の数になるか 指針 (1)まず,3" が10桁の数であるということを不等式で表す。 (2) 進数Nの桁数の問題 不等式数 N <数の形に表す ・・・・・・チャート式基礎からの数学A 基本例題 150参照。 に従って、問題の条件を不等式で表すと 3100 1 N <3100 ......① 10進法で表したときの桁数を求めるには, 不等式① から, 10″N < 10" の形を導 きたい。そこで,不等式① の各辺の常用対数をとる。 各辺の常用対数をとると (1)3" が 10桁の数であるとき 10°31010 解答 9≤n log103<10 ゆえに 9≦0.4771n<10 9 10 よって ≤n<⋅ 0.4771 0.4771 したがって 18.8n<20.9...... この不等式を満たす最小の自然数nは n=19 Nがn桁の整数 →10-1≤N<10° 基本 A 町 比べ 合. ただ 解 B (2)Nは3進法で表すと100桁の自然数であるから 3100-1100 すなわち 399 N < 3100 各辺の常用対数をとると 9910g10 3 log10N <10010g103 99×0.4771 ≦log10N <100×0.4771 47.2329 ゆえに すなわち log10N <47.71 よって 1047.2329 N1047.71 ゆえに 1047 <N<1048 この不等式を満たす自 数は, n=19, 20である が,「最小の」という条 があるので, n=19 したがって, Nを10進法で表すと, 48桁の数となる。 別解 10g103=0.4771 から 100.4771=3 ゆえに, 3% N <3400 から (1004771) ≤N < ( 100.4771) 100 1047.2329 N1047.71 よって ゆえに 1047 <N<1048 したがって, Nを10進法で表すと, 48桁の数となる。 <p=logaM⇔d=" 練習 log102=0.3010, log103=0.4771 とする。 189 (1) 小数で表すとき, 小数第3位に初めて0でない数字が現れるような自 然数nは何個あるか。 〔類 北里大) (2) logs 2 の値を求めよ。 ただし, 小数第3位を四捨五入せよ。 またこの結果を 利用して, 4' を9進法で表すと何桁の数になるか求めよ。

解決済み 回答数: 1
数学 高校生

常用対数 これの(2)がなんで39桁になるかが分かりません( ˘•ω•˘ ).。oஇ 回答よろしくお願いします🙇🏻‍♀️⸒⸒

の最大値と最小値を求めよ。 本 188 常用対数を利用した桁数, 小数首位の判断 ①①①①① Ag2=0.3010,10gto3=0.4771 とする。 a lagio, logio 0.006, logiov/72 の値をそれぞれ求めよ。 は何桁の整数か。 100 小数で表すと、小数部位に初めてでない数字がれるか p.302 基本事項2 の累乗の積で表してみる。 なお,10g105の5は510÷2と考える。 (1) 底は10で, log102, 10g103の値が与えられているから,各対数の真数を2,310 3 2100 (2) (3) まず 10g 10 65, 10g10 を求める。 解 あり 解答編 .190 検討 参照。 正の数Nの整数部分が桁⇔k-1≦log10N <k 正の数 N は小数第k位に初めて0でない数字が現れる⇔k≦logN<-k+1 CHART 桁数, 小数首位の問題 常用対数をとる 303 10 (1) log105=logo =10g1010-10g102=1-0.30100.6990 log10.006=login (2・3・10-)=10g102+log10 3-310g 10 10 =0.3010+0.4771-3=-2.2219 logi√72=logio (2-3) = (310gin2+210gi3) <log1010=1 重要 10g 5=1-log 2 この変形はよく用いられ る。 √A=A =12(3×0.3010+2×0.4771)=0.9286 (2) log 10 650-50 log106=50 log10(2.3) =50(10g102+10g103) =50(0.3010+0.4771)=38.905 ゆえに 38 <10g10 65 39 よって 1038 <6501039 したがって, 650 は 39桁の整数である。 2\100 (3)10g10( =100(10g102-10g103) 3 (2) 10 ≤N<10%+1 ならば,Nの整数部分 は (+1) 桁。 =100(0.3010-0.4771)=-17.61 -18<logio ゆえに よって 10-18< 2 *<(3) 200 100 <-17 <10-17 ゆえに、小数第18位に初めて0)でない数字が現れる。 5章 (3) 10 ≤N<10-*+1 ならば, Nは小数第 位に初めて0でない数 字が現れる。 練習 188 log 102=0.3010, 10g103=0.4771 とする。 15 は 桁の整数であり, は小数第 1位に初めて0でない数字が現れる。 3100 3-5 p.312 EX121

解決済み 回答数: 1
数学 高校生

数2の質問です! (2)でなぜ23は答えにならないのかを 分かりやすく教えてほしいです!! よろしくおねがいします🙇🏻‍♀️՞

log102=0.3010, 10g103=0. (1) 232 は何桁の整数か。 (2)3”が12桁の整数となる自然数nの値をすべて求めよ。 50 (3) (2) は小数第何位に初めて0でない数字が現れるか。 CHART & SOLUTION 整数の桁数, 小数首位 常用対数の値を利用 (1) Nが桁の整数 - →10-1≦N<10"⇔n-1≦10g 10N <n logo2=0.3010 を用いて, 10g10232 の値を求める。 20 10'≦3"<1012⇔ 11≦nlog103 <12 (2)3" が 12桁の整数 (3) Nの小数首位がn位 ->> ≤ 10" 10" ≤N<--n≤log₁N<−n+1 2\50 -n≤log10 <-n+1 を満たす自然数n を求める。 3 解答 244 基本事項 5 (1)10g10232=3210g102=32×0.3010=9.632 常用対数の値を求める。 よって 9<log10 232 <10 ゆえに 10°2321010 ←log1010° <logio232 したがって, 232 は10桁の整数である。 <log 101010 (2)3" が 12桁の整数であるとき 101131012 tl よって 11≦nlog103 <12 各辺の常用対数をとる。 大 ゆえに 11≦0.4771xn<12 logx23 ゴールド 11 12 よって ≤n<- 0.4771 0.4771 ◆各辺を 0.4771 (=10g103) で割る。 すなわち 23.0...≦x<25.1・・・ nは自然数であるから n=24,25 吟味。nは自然観 (3)10g10 (2) O 2\50 2 =50 log 10 = =50(10g10 2-10g103) 常用対数の値を求める。 =50×(0.3010-0.4771)=-8.805 50 23 よって ゆえに -9<log10(-8 2\50 10-9<(2)°<10-8 したがって, 小数第9位に初めて0でない数字が現れる。 log10 10-<logi <logio10 sarpe isar 70-3)-

解決済み 回答数: 1