学年

質問の種類

数学 中学生

⭕️の部分がわかりません。教えてください🙏

●三角形の合同を利用して面積を求める 台形の土地の面積をはかる方法 図1は、江戸時代の土地の測量 (検地) のようすを 表したものです。 土地になわをはって、 そのなわの長さから、 台形の土地の面積を求めています。 その方法は、 図2を使って、 次のように説明できます。 台形の土地の面積をはかる方法〉 図1の台形の土地を、図2の台形ABCD で表します。 ここで、AD<BC, DAB= ∠ABC=90°とします。 線分ABの中点をE, 線分 DC の中点をFとして, 線分 EF の位置になわをはります。 このとき AD // EF となります。 図1 「徳川幕府県」より 図2 A G D I ・線分AD上に点 G, 線分 BC 上に点Hを, EFGHと なるようにとり, 線分 GH の位置になわをはります。 はった2本のなわの長さをはかり、その積 (EF×GH) が台形の土地の面積になります。 E F B H 読みとりのポイント 問題文の情報を整理する •∠DAB= ∠ABC=90° ・点Eは線分ABの中点 ・点Fは線分DCの中点 . AD // EF ⚫EFIGH ・台形 ABCDの面積 とEF×GHは等しい。 (1) 図2について, ななみさんは次のように考えました。 (ア)~(ウ) にあてはまる記号を書きなさい。 点Fを通り, 線分ABに平行な直線と, ABJI 直線AD, BC との交点をそれぞれ I J とすると, EF × GH は、 長方形 (ア)の面積になります。 三角形(イ)と三角形 (ウ) が同じ面積なので、 EF × GH は台形ABCD の面積に等しくなります。 (1) DFI (ウ) CFJ EFとGHは、長方形ABJIの横の長さと縦の長さになるので EF×GH は, 長方形ABJIの面積になる。 NO 長方形ABJI と台形ABCDとで異なる部分が,△DFIとCFJである。 長方形 ABJI =五角形ABJFD + ADFI 台形 ABCD =五角形ABJFD+ ACFJ (2) (1)の下線部を次のように証明しました。 証明の過程を書きなさい。 仮定から導けることを 整理する ・四角形 AEFIは 長方形だから, EF=AI EFは長方形ABJI の 横の長さ ・EFIGHより, 同位角が等しいから、 AB // GH 四角形 ABHG は 長方形だから. GH=AB GHは長方形ABJIの 縦の長さ また, にはあてはまる合同条件を書きなさい。 ただし,(イ) (ウ) には,(1)と同じ記号があてはまります。 (証明) ACFJにおいて, LIAB=∠ABC=90°, AB//IJ だから, DIF = ∠CJF=90° 対頂角は等しいから, ① ② ③ より [UF-CT <DFI= ∠CFJ 直角三角形で,斜辺と1つの鋭角がそれぞれ等しいから, ADFI= ACFJ したがって, (イ) =△(ウ) 別解 仮定から, 対頂角は等しいから, DF=CF ∠DFI=∠CFJ AI // BCより、平行線の錯角は等しいから、ID=∠CF ① ② ③より, 1組の辺とその両端の角がそれぞれ等しいから, ADFI= ACFJ (2) 直角三角形の合同条件を ...... 3 確かめる 2つの直角三角形は, 次のどちらかが成り立つ とき合同である。 斜辺と1つの鋭角が それぞれ等しい。 ・斜辺と他の1辺が それぞれ等しい。

未解決 回答数: 1
数学 高校生

写真見づらくて申し訳ないです。問10だけ解き方がわからないので教えていただきたいです。

18:27 KK 18:27✔ ← R6_15_nurse_mat... @ 回 2 問6~10の解答として正しいものを (1)~(5)の中からそれぞれ1つ選び 解答用紙にマークせよ。 5G Doll 74 A 2次関数f(x)=-2x+2-1.g(x)=-2x+28-1 (a,bは実数) について,xの方程式(x)=0とg(x) = 0 はと もに実数解をもつものとする。 f(x)=0の2つの実数解をα. Bとし, g(x)=0の2つの実数解を するとき、以下の 問に答えよ。 問6 α =βとなるようなαの範囲はどれか。 (1) -2<<-1 (2) -2<a<0 (3) -1<<1 (4) 0<a<2 (5) 上の4つの答えはどれも正しくない。 問7a=Bで,aとBがともに12より大きくなるような範囲はどれか。 (1) -2<<1-17 (2) -1<<1-√7 (5) 上の4つの答えはどれも正しくない。 1-√7 (3) 1-17 <<1+/7 (4) 1+/7 <<1 4 問8 α = B.y=すなわちf(x)=0とg(x)=0がともに解をもち,ayであるようなαの組 (v.b)はどれか。 (1)(1.0) (2) (1.1) (5) 上の4つの答えはどれも正しくない。 (3) (0.1) (4)(1.1) (1) 座標平面上の2つの放物線y=f(x)とy-g(x)の交点が(1, -1)であるとする。 このようなaba <b>について。 との積の値はどれか。 (2)- (5) 上の4つの答えはどれも正しくない。 問10a< 6. <y <B< であるとき, a+bはどの範囲にあるか。 (1)&<a+b (2) B <a+b <お (3) y <a+b <B (4) α <a+by (5) 上の4つの答えはどれも正しくない。 2- 3 問11~15の解答として正しいものを (1)~(5)の中からそれぞれ1つ選び、解答用紙にマークせよ。 平面上に正五角形ABCDE がある。 頂点 A. B, C, D, Eはアルファベット順に反時計回りに配置されているものど はじめに頂点に基石を置く。 そして1個のサイコロを振り、出た目の数だけ碁石を反時計回りに頂点から頂点へ る試行を繰り返す。 ただし、試行によって移動した碁石の位置は、次の試行を行うまで変えないものとする。 例えば、 試行で3の目が出たら、 碁石はA→B→C→Dと進みDに到達する。 また、 最初の試行開始後、 碁石がAに戻って Aを通過したとき、 碁石が1周したものとする。 このとき、1回の試行の結果 石がAまたはBにある確率をα. 1回の試行の結果 蕃石が1周する確率をとする。 Pe を2回繰り返した結果、 碁石が2周する確率を 試行を3回繰り返した結果 碁石がちょうど2周してAにある確率をd とする試行を回した。 03だけが右からしてAにある確定をおとする。このとき はいくら

回答募集中 回答数: 0