学年

質問の種類

数学 高校生

マーカーの式はどうやって求めたものですか?

192 1/21.7 1/26.X / 23. 重要 例題 113 漸化式と極限 (5) ... ・はさみうちの原理 数列{an}が0<a<3, an+1=1+√1+an (n=1, 2, 3, …………) を満たす 1 (1) 0<a<3を証明せよ。 (2) 3-an+1<· 3 (3-4) を証明せよ。 (3) 数列 {a} の極限値を求めよ。 C i p.174 基本事項 3. 指針 (1) すべての自然数nについての成立を示す数学的帰納法 の利用。 (2)(1) の結果,すなわち > 0, 3-α>0であることを利用。 (3) 漸化式を変形して,一般項an をnの式で表すのは難しい。 そこで,(2)で 式を利用し, はさみうちの原理を使って数列{3-an}の極限を求める。... はさみうちの原理 すべてのnについて pan≦gn のとき limplimgn=α ならば liman=α 710 118 80 なお,次ページの補足事項も参照。 CHART 求めにくい極限 不等式利用ではさみうち 解答 (1) 0<an<3 ① とする。 [1] n=1のとき,与えられた条件から ①は成り立つ。 [2] n=kのとき, ①が成り立つと仮定すると 0<a<3 n=k+1のときを考えると, 0<ak <3であるから ak+11+ √1+ak 20 SE ak+1=1+√1+an <1+1+3=3 したがって 0<ak+1 <3 よって, n=k+1のときにも①は成り立つ。 [1], [2] から, すべての自然数nについて ① は成り立つ。 (2)3-αn+1=2-√1+an 3-an 2+1+an3 3 (3-an) n-1 (3-a₁) (数学的帰納法 <0<a<3 <0 < ak から ak<3から <3-α>0で ら 2+√1+ n≧2のとき (3) (1), (2) 5 0<3-an 1n-1 lim(1/3) (3-a) = 0 であるから したがって lim(3-an)=0 00+U liman=3 n→∞ <()*(3- 練習 α=2, n≧2のときan= Jan-1 1 を満たす数列{an}について 2 ③3 113 (1) すべての自然数nに対してan>1であることを証明せよ。 (2) 数列{a} の極限値を求めよ。

解決済み 回答数: 1
数学 高校生

数3の微分です。 答えと違うこの方法でもよろしいのでしょうか?

例題 56 連続と微分可能 ( **** 関数f(x)= sin 1 x 0 微分可能か . (x=0) (x=0) か は,x=0 で連続か. また, x=0 で 「考え方 連続も微分可能もそれぞれ定義に戻って考える. < 連続> 〈微分可能> KAP f(x) がx=a で連続 f(x) が x=aで微分可能 220 ⇔ limf(x)=f(a) x → a ⇔f'(a)=lim f(ath)-f(a) 70 k→ 0 h が存在する 解答 このとき「微分可能であれば連続」 であるが,「連続であっても、微分可能とは限らな 「い」ことに注意する. x=0で0sin ossin1/10より 0≦x°sin limx2=0 より x0 | ≤x² x 1, lim|x'sin |=0 x limf(x)=limxsin- したがって, x0 0fx -=0 x f(0)=0 より, limf(x)=f(0) となり, x 0 関数f(x) は x=0 で連続である. f(0+h)-f(0) 次に, lim h→0 h 1 h² sin 0 h =lim h→0 h limf(x)=f(0) であるか確 かめて, x=0 で連続かど うか調べる. x20 より 各辺にxを 掛けても,不等号の向きは 変わらない. 各辺をx→0として極限 をとり、はさみうちの原理 を利用する. x=0 で微分可能かどうか 調べる. YA |y=f(x) =limh sin- h→0 h 0≦|hsin/12/11hl.limh=0より①は、 limhsin12=0 h→0 h よって, f'(0) が存在するので, 関数f(x)はx=0で微分可能である. f'(0)=0 注〉x=αで連続であることとは別にx=αで微分可能であることを示す必要がある. 練習 x 56 ** f(x) * sin(x0) は, x=0 で連続か. また, x=0で微分可能か (x=0) →p.131

解決済み 回答数: 1
数学 高校生

この0<はどこから来てるんですか?n^2/2^nの最小値ならnに4を代入した1じゃないんですか?どうして1<=にしないんですか?

28 — 数学Ⅲ 第3 分数型) と極限 PR nは4以上の整数とする。 ③20 不等式 (1+h)" >1+nh+ n(n-1) h²+ 2 6 2" (1) lim (2) lim n2 ugu n-8 22 与えられた不等式において,h=1 とすると 2">1+n+ n(n-1) n(n-1)(n-2) 2 6 n(n-1) (1) ①から 2"> 2 2nn-1 両辺をnで割ると ここだけでた。 n 2 n-1 lim 2 =∞ であるから (2) ①から 2"> n(n-1)(n-2) mil 2n lim =8 n→ ∞ n n(n-1)(n-2) (h>0)を用いて,次の極限を求めよ。 binf. 与えられた不等式 (1+h)=2 T=0 inCh (二項定理)から得られる。 mil n>0であるから不等 号の向きは変わらない。 an>bnで limb = 0012 ならば liman=8 110 (2) で定められ PR 21 6 Vie <a>6>0のとき 1 6 両辺の逆数をとると 2n n(n-1)(x-2) 2 'n' 6m² 両辺に n' を掛けると 22 n² 6n よって 2n n2-3n+2 2n n(n-1)(n-2) a 言 20 であるから不等 号の向きは変わらない。 (n-1)(n-2) =n2-3n+2 G 6n ここで, lim =lim n→ ∞ n²-3n+2 n→∞ 6 n 3 2 + take (1) n -= 0 であるから n² lim n→∞ n² 2n 2 = 0 はさみうちの原理 a a1=2, an+1= 5an-6 2an-3 (n=1, 2, 3, ・・・) で定められる数列{an} について (1)6m= an-1 an-3 とおくとき,数列{bm} の一般項を求めよ。 (2)一般項 αと極限 liman を求めよ。 n→∞ 5an-6 Lint. 1 liman = α と仮定 (1) bn+1= an+1-1 2an-3 an+1-3 5an-6 1218 5an-6-(2an-3) すると, lim 2 5an-6-32a

解決済み 回答数: 1
数学 高校生

問題44の(3)や、問題45の(2)のような式変形を、こんな天才的な発想出来ないでしょ!と思うのは僕だけでしょうか。解説を見れば何をしているのかはわかるのですが、問題によってやり方も様々で、慣れとかでどうにかなるものなのかと思ってしまいます。 何かコツや、式変形の対応デッキ... 続きを読む

基礎問 76 MAN AV 44 はさみうちの原理(I) 次の問いに答えよ. (1) すべての自然数nに対して, 2">n を示せ. (2) 数列の和 Sm= (1)をnで表せ。 (n=k(k≧1) のとき,2">k と仮定する. 両辺に2をかけて, 22k ここで, 2k-(k+1)=k-1≧0 (≧1 より) ..2'+'>2k≧k+1 すなわち, 2+1>k+1 よって, n=k+1 のとき, ① は成りたつ. (i), (ii)より, すべての自然数nについて, 2">n は成りたつ. (3) lim Sm を求めよ. (1) 考え方は2つあります。 ... 1 2 n (2) Sm = + 4° 4' +・・・+ ...... ② 4"-1 1/Sn= 1 n-1 n +・・・+ + ......3 4₁ 4"-1 4" ② ③ より 3 (IIB ベク4 ) Sn= + 1 1 n -(+) +...+ n 4' 4"-1 -Sn= 4 1 4" I. (整数)” を整式につなげたいとき, 2項定理を考えます。 II. 自然数に関する命題の証明は数学的帰納法. (IIB ベク137 (2) 本間のΣの型は, 計算では重要なタイプです. (IIB ベク121 S=Σ(kの1次式)rk+c (r≠1) は S-S を計算します。 (3) 極限が直接求めにくいとき, 「はさみうちの原理」 という考え方を用います。 bn≦a≦cm のとき .. Sn= n (3)(1)より2">n だから, (2")'>n . 4">n²=0<< 20< n 4 4-1 n lim40 だから、はさみうちの原理より lim 11-∞ n n - 4-1 -=0 limb= limcn=α ならば liman = α →00 11-00 この考え方を使う問題は,ほとんどの場合, 設問の文章にある特徴がありま す. (ポイント) さらに, lim lim (14) "=0 より lim.S,=- 16 11-00 9 「ポイント 解答 (1) (解Ⅰ) (2項定理を使って示す方法) (x+1)"=2,Chr" に x=1 を代入すると k=0 2"=nCo+mCi+nCz+... +nCn n≧1 だから 2"≧Co+nCi=1+n>n .. 2">n (解II) (数学的帰納法を使って示す方法) 2">n ...... ① (i) n=1のとき (左辺) =2, (右辺) =1 だから, ①は成りたつ 演習問題 44 極限を求める問題の前に不等式の証明があれば, はさみうちの原理を想定する 次の問いに答えよ. (1) すべての自然数nについて, 不等式 3"> n" が成りたつこと 数学的帰納法を用いて証明せよ。 "k =215730 (n=1,2, …) とおく。このとき, (2) Sm= 2 k=1 1 n 3 3+1 (3) lim Sm を求めよ. 11-00 が成りたつことを示せ. CS CamScanner 第4章

解決済み 回答数: 1
数学 高校生

ガウスを不等式の中に入れてるのってどういう意味ですか?

基本 例題 23 数列の極限 (6) ・・・ はさみうちの原理 3 △ 45 ①①① (1) 実数x に対して[x]をm≦x< m+1 を満たす整数とする。 このとき, [102] lim 102m を求めよ。 (2) 数列{an) の第n項 α7 はn桁の正の整数とする。 このとき, 極限 [山梨大) logio an lim を求めよ。 72 [広島市大〕 基本21 指針 この問題も、極限が直接求めにくいので、はさみうちの原理を利用する。 (1) [x] をはさむ形を作る。 x]はガウス記号であり (「チャート式基礎からの数学 I+A」 p.121 参照) [x]≦x< [x]+1 が成り立つ。 これから (2) α は n桁の正の整数 10" 'Man<10" (数学ⅡI) (1)任意自然数nに対して, [102] 10°"z<[10%"z]+1 102-1< [102]≦102 1 [102] < 10²n 102n x-1<[x]≦x <[x]≦x<[x]+1 2章 ③数列の極限 2限 [102] をはさむ形。 から 解答 よって 1 limπ 201 102πであるから [102] lim π はさみうちの原理。 102n 12-00 (2) α は n桁の正の整数であるから 各辺の常用対数をとると 10"-1≦an<10" n-1≦10g10an<n 10g1010=n よって 1 log10 an <1 n n lim (1-1) =1であるから lim log10 an 1 はさみうちの原理。 12-00 n 7→80 注注意 はさみうちの原理を誤って使用した記述例 例えば、前ページの例題22の解答で, A 以降を次のように書くと正しくない答案となる。 0<<6 Aから n² 0<lim- <lim → 2 6 n =0 よって lim n2 =0 2 [説明] はさみうちの原理は 818 an≦cn≦bn のとき lima= limb = αならば limc=α →80 n00 これは, 「acn≦bn が成り立つとき, 極限lima, limb が存在し, それらがαで一致する ならば,{c}についても極限limc が存在し, それはαに一致する」という意味である。 72700 72100 において, 存在がまだ確認できていない極限lim を有限な値として存 上の答案では, 在するように書いてしまっているところが正しくない。 正しくは、 前ページの解答のA, B のような流れで書く必要がある。 n² 11-00271 練習 実数 α に対してαを超えない最大の整数を [α] と書く。 [ ]をガウス記号という。 23 (1) 自然数の桁数kをガウス記号を用いて表すと, k =[[ ] である。 (2)自然数nに対して3”の桁数を km で表すと, lim- kn 12-00 n "である。 [慶応大]

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

(3)について (1)より、のあとどっから出てきた値ですか? どう出てきたか分からないので教えて欲しいです。 また、どうやって赤色の式を立式したのか。 立式後の計算過程はわかるのですが、 最後の1文の式も理解出来ません。 多いですが全て教えて欲しいです。

政宗 3 単調 基本 例題 019 有界で単調減少する数列の極限 次の条件で定められる数列{an} について,以下のことを示せ。 ★★ [基本 a>2 この 1 a=2, an+1= an an 2) =(a+) (n=1, 2, 3, ....) (1) すべてのnについて an≧2 (2)数列{az} は単調に減少する。 指針 (3) 数列{a} は √2 に収束する。 指針 この漸化式はニュートン法(p.96 参照) によって構成され, 近似値 2 を与える計算方法 1つである。 (1)帰納的にa>0であるから,相加平均≧相乗平均の関係を利用する。 (3) はさみうちの原理を利用して, lim an-√21=0 を示す。 12100 解答 (1) α=2>0 であり,漸化式の形から,すべての自然数nについてan>0である。 よって,相加平均と相乗平均の関係から,任意の自然数nについて 11 = 1/2 (an + 2 ) 2 1 1 · 2 √an · 2 =√2 an+1=- an an =2√2 であるから,すべてのnについて 全体 > 「or an≧√2 ord -ano (2) 任意の自然数nについて anz anti-an= 2 = (a + 2) - 2-an -an= 両認して、 2 2an (1)より, an≧√2 であるから an = 2 2. an²≤0 ゆえに 2-an≤0 anti-an 解答 よって, an+1≦an であるから, 数列{az} は単調に減少する。■ (3) 与えられた漸化式により an-√2 より 2an an+1 1 an2-2√2 an+2(an-√2)2 S an 2an 2-12 であるから 2an √2 = 1½ (an - √2) 0≤an-√2 ≤ (1) (a-√2) よって lim (1) (-√2)=0であるから 1\n-1 2an an-√2 antl 20n -(an-√2) F=/(an-2) a) - 2 ½ £ (an-√=)) ant-2FanF liman=√2 818 an an 089-2 osan- 2 参考 lin n- 0500-12

未解決 回答数: 1