学年

質問の種類

数学 大学生・専門学校生・社会人

4(4)(5) と 5 のリミットの計算ができません (4)はこれ以降どのようにすればいいかわからず、(5)と5の計算については全く分かりません どなたか教えてください

数学総合演習 (05/14, 解析) 解答は解答用紙1枚に全て記入すること. 裏面を使っても良い。 ・解答は 解の導出過程 (途中計算) も含めて, ていねいに記述すること. ・日付, 科目, 担当教官,氏名, 学籍番号, クラスを忘れずに記入すること. ※ 科目 数学総合演習1, 担当教官 美暁 解答用紙の提出について (ジャン シャオホン) 1. 演習レポート形式: 複数ページの解答用紙の写真を1つのPDFファイルにまとめて解答用紙に氏名、学籍番号、クラ スを忘れずに記入すること)。 ファイル上 (5MB)。 2 演習レポートのファイル名: "学籍番号演習期 pdf" としていただきますようお願いいたします。 (例: 学生 b1008300 について。 4月21日の演習の場合、レポートは "b1008300-0421.pdf になります。) 3.課題レポートの提出先: 以下の場所に提出してください。 [HOPE]-[数学総合演習11-EFGH]-数学総合演習1-解析 (1-EFGHクラス) (05/14) 提出締め切り:5月15日 (木) 午後6:30 まで。 解答の公開 5月15日 (木) からHOPEで公開されます。 1. (x+2)* を計算しなさい。 2. 次の一般項で与えられる数列のうち、 収束するものを選びなさい. an =2n+1,b=,c="ds=cosl n 3. 数列a.= (-)" が収束する範囲を求めよ。 また、収束するときの 72 極限値 lim (14) を求めよ. +80] 4. つぎの極限を調べよ。 4+8+... +4 n→∞ 1+3+…+ (2n-1) (1) lim n! (3) lim (5) lim V3n+1 72100 (2) lim n→∞0 (4) lim (1+1/+1/+ + n→∞ (6) lim noon- n 5.p>0.0>>とする。 4.+1=20 (1+pan)をみたす数列を考える。 1 + 2pan+s = (1+2pa) を示し, lim == 上を導け、 11-00 2p

未解決 回答数: 1
数学 中学生

この問題教えてください

水 2 9 木 3 10 17 24 まり、 18 25 章のとびらからLINK!! 数学の広場 2つの自然数の積を簡単に求める方法 13ページで計算したとおり, 十の位の数が同じで、一の位の数の和が10になる 2桁の自然数どうしの積は,次のようにして求めることができます。 ① 2桁の自然数の十の位の数と十の位の数に1を加えた数の積を, 千の位と百の位に書く。 (求めた積が1桁のときは、百の位に書く。) ② 2桁の自然数の一の位どうしの積を, 十の位と一の位に書く。 (求めた積が1桁のときは、一の位に書き, 十の位には0を書く。) am 24 58 71 × 26 × 52 × 79 5609 624 L4x6 -2×(2+1) 3016 -8×2 -1×9 -5×(5+1) -7x (7+1) ○上のように計算できることを, 文字を使って証明してみましょう。 証明 2つの2桁の自然数は, 十の位の数が同じで、一の位の数の和が 10 だから, a, b, c をすべて9 以下の自然数とし,b+c=10と すると,それぞれ10a+b10a+c と表すことができる。 したがって, それらの積は, (10a+b)(10a+c)=(10a)2+( × 10a + =100a2+10ax10+ =100 (a2+α) + =100 + 1 3式の利用 と は、ともに1桁あるいは2桁の自然数だから、 が千の位と百の位に書かれる数, | が十の位と一の位に 書かれる数になる。 45ページで,ほかの2桁の自然数どうしの 積の求め方についても考えてみよう。 41

未解決 回答数: 1