学年

質問の種類

政治・経済 高校生

国際連合の役割が問われている昨今の状況では、国連体制反対と現状維持の二つの意見が分かれることは想像に難くありません。【別紙】に示した文章は、皇學館大学学長の田中卓国史博士の著書「愛国心と戦後五十年」(青々企画、1996)の一節です。田中博士は戦前の史学思想(通称:平泉史学)... 続きを読む

13 国連体制の崩壊 非平等・非正義・非平和の実態 先づ国体制の崩壊です。私は、国連体制といふものは、次第に崩壊しつつあると 思ひます。その実情を述べませう。 国連は前に説きましたやうに、その章に、(1)「大小各国の極」、(2)「正義」とそ の「義務の尊重」、(3)「平和及び安全の維持」を譲ってあるのですが、果してそれは守 られてきたか。 実は、それらが粉であり、むしろその反対であるといふ正体が、既に明 らかとなってきたのであります。 先づ (1) ですが、実際に国は「大小各国の同権」を認めてゐるか。 本当に各国すべ 平等であるのか。さうではない。何故なら、国連機構で最も重要な安全保障理事 会において、特別の国だけが最初から常任理事国となり、拒否権までをもつてゐる。それ らは米・英・仏・ソ連(今はロシア)・中華民国(今は中華人民共和国)の五ヶ国、要するに 第三次世界大戦の戦国でせう。これで、国の大小を間はず皆平等だ、と言へますか。言 へないでせう。ですから、私は指摘するのです、国連は決して平等(同権)の組織では ない、と。明らかに平等”なのです。 次に、国連に(2)「正義」はあるか。歴史の示すところ、遼は「正義」でなく、も しろ非正義といふべきです。それは中華民国の運命をみれば明らかです。 中華民国は、 英と共に当初から連合国に加はり、日本と戦って勝利をえた国です。したがって中華民 国が国の中で大きな地歩を占めるのは当然のことであります。そのために安全保障理 事会の常任理事国にも選ばれた。そして中華民国自身は、終始国連のために誠意をもって 忠実に協力してきた。ところが昭和二十四年に、中華人民共和国が抬頭してきて、大陸を 支配する。しかし国連は、これを最初、レッド・チャイナと呼んで偽政府とみなし、正統 政府は台湾に落ち延びた中華 内だとしてみました。 それは筋が通ってゐます。しかし、 やがて大陸のレッド・チャイナの方が勢力をつけてくる。これに反して台湾の中華民国の 方は、大陸反攻を口にするがチャンスもなく、どうやら台湾で納まってしまひさうな形勢 となりました。 さういふ情勢のなかで、昭和四十六年十月二十五日、国連デーの翌日ですが、この時、 国連は、中華民国をメンバーから追放したのであります。正統は、中華人民共和国の方で あるとして、台湾の中華民国は除名されることになった。これは一体どういふことでせう か 中華民国は国連に対して不都合な、なにか悪いことでもしたんですか。さうではない。 協力こそすれ、何も悪いことはしてゐない。 元々安保理事会の常任理事国でもあり、重要 なメンバーとされてみたものが、どうして追放されたのでありますか。 これが「正義」と か「その義務の尊重」といますか。 要するに、大陸の中華人民共和国の力が強大となり、 その強大な力の前に国連の“正義”が膝を屈したといふことではありませんか。そ こで私は、国連のやり方は“正義”だといふのです。

回答募集中 回答数: 0
数学 高校生

(2)の問題で解がともに1より小さいときなぜa-1+b-1が0より小さくなるのか理解できません またなぜa-1 b-1と置くのでしょうか

x2-4 x x x2-4 B 2 x-2 x X x ÷ x (x+2)(x-2) x-2 x 北 x-2 x × x-2 =x+2 よって (2) HC (x-1) xx4(x+2)(x-2) x- X 別解 B 2 x-2 1. 1- xx X x =x+2 x-2 3 2次方程式2mx+2m²-5=0が,次のような異なる2つの解をもつとき,定数の値の範囲を求めよ。 【重要】 (1) ともに1より大きい (2) ともに1より小さい この2次方程式の2解をα, B, 判別式をDとする。 1/2=(m)-1-(2m²-5)=m+5=-(m+√5)(m-√5) また,解と係数の関係により α+β=2m, aβ=2m²-5 (1) 方程式が条件を満たすのは,次が成り立つときである。 D>0で, AAI 直線 よ ①ゆよ y (-1)+(β−1)>0 かつ(α-1XB-1)>0 D>0より -(m+√5)(m-√5)>0√5 <<√5 ... ① また (α-1)+(β-1)=(a+β)-2=2m-2 (α-1)β-1)=αβ-(a+β)+1=(2m²-5)-2m+1=2(m-m-2)=2(m+1Xm-2) *E**** (α-1XB-1)>0より2(m+1Xm-2)>0 (−1)+(β-1)>0より 2m-2>0 よってm>1 よって効く-1,2m ③ ① ② ③ より 2<<√5 (2) 方程式が条件を満たすのは,次が成り立つときである。 D>0で, (-1)+(β−1)<0 かつ (α-1Xβ-1)>0 D>0より -√5cm<√5 (−1)+(β−1)<0 より 2m-2<0 よって1 (a-1X8-1)>0) m<-1, 2<m (3) ① ② ③ の共通範囲を求めて -√5 <<-1 次の3次方程式を解け 4x+8=0 P(x) =42+8 とすると P(2) =23-4-23+8=0 *** 0 -√5 -1 1 2√√5 m -√5-1 D- 12.5m x よって、P(x) は x2 を因数にもち P(x)=(x-2)(x-2x-4)

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

(1)から分かりません。なぜこのようなグラフになるんでしょうか?

123 3章 8 関数とグラフ つけ。 かけ。 重要 例題 立つ。これを場合分けに利用 幅1の範囲で区切り ≦2x<2,2x=2で場合分け、 1≦x<2, x=2で場合分け、 =-2 -2-101 きy=-2 (2) y=-1 71 定義域によって式が異なる関数 関数f(x) (0≦x≦4) を右のように定義すると 次の関数のグラフをかけ。 (1) y=f(x) 指針 (2)y=f(f(x)) 2x (0≦x<2) f(x)= 8-2x (2≤x≤4) 定義域によって式が変わる関数では, 変わる 境目のxyの値に着目。 (2)f(f(x)) f(x)のxにf(x)を代入した式で、 f(x) <2のとき2f(x) f(x)のとき 8-2f(x) (1)のグラフにおいて,0≦f(x) <2となるxの範囲と, 2≦f(x)≦4 となるxの範囲 を見極めて場合分けをする。 (1) グラフは図 (1) のようになる。 (2f(x) (0≦f(x)<2) (2) f(f(x))= 18-2f(x) (2≤f(x)≤4) よって, (1) のグラフから 0≦x<1のとき 1≦x<2のとき 2≦x≦3のとき f(f(x))=2f(x)=2.2x=4x f(f(x))=8-2f(x)=8-2.2x =8-4x f(f(x))=8-2f(x)=8-2(8-2x) =4x-8 3<x≦4のとき f(f(x))=2f(x)=2(8-2x) 変域ごとにグラフをかく。 < (1) のグラフから,f(x) の変域は 0≦x<1のとき 0≤f(x)<2 1≦x≦3のとき ① 2≤f(x)≤4 3<x≦4のとき 0≤f(x)<2 また, 1≦x≦3のとき, f(x) の式は y=0 1≦x<2なら =16-4x f(x)=2x y=1 よって, グラフは図(2) のようになる。 y=2 (1) (2) y ya =x+1 -1 2 A M O 1 2 3 4 x 0 1 2 3 4 x 2≦x≦3なら f(x)=8-2x のように, 2を境にして 式が異なるため, (2) は左 の解答のような合計4 通 りの場合分けが必要に なってくる。 -2=0 an x= ntpと表されるとき、 とき, 01より xの整数部分を表す記号であ 参考 (2) のグラフは,式の意味を考える方法でかくこともできる。 [1]f(x) が2未満なら2倍する。 [2]f(x) が2以上4以下なら, 8から2倍を引く。 [右の図で、黒の太線・細線部分が y=f(x), 赤の実線部分が y=f(f(x)) のグラフである。] なお,f(f(x)) f(x) f(x) の 合成関数といい, (fof) (x) と書く (詳しくは数学Ⅲで学ぶ)。 とする。 8から2倍を 引く 4 2 0 4 x 2倍する 練習 関数f(x) (0≦x<1) を右のように定義するとき, ◎ 71 次の関数のグラフをかけ。 2x (0 ≤ x < 1/1) f(x)= (1) y=f(x) 2x-1 (2) y=f(x)) 11/1/1≦x<1)

回答募集中 回答数: 0
化学 高校生

CODの測定についてなのですが、最初に加えた10mlを考慮して14.7mlで考えると思ったのですがなぜ最初に加えた分は考えていないのか教えて頂きたいです。よろしくお願い致します。

163 <CODの測定〉 ★★★ 4/ 次の文章を読み, あとの各問いに答えよ。 Jm 0.01 Jill th 「化学的酸素要求量 (COD) とは、水中に存在する被酸化性物質, 主として有機物や Fe2+やNOなどを一定の条件で酸化分解するとき,消費される酸化剤の質量を、そ れに相当する酸素 (分子量320) の質量で表したもので、水質汚染の状態を知る1つの 重要な指標とされている。試料A)を P COD の単位は,試料水1Lあたりの酸素消費量(mg)の数値で表される。い X(1) いま 濃度 54.0mg/Lのグルコース(分子量180)の水溶液を試料水とする。 グル コースが完全に酸化分解されたとして、その化学反応式を示し, CODの理論値を → 計算で求めよ。 41 21 (1) Td T ある河川水200mLに希硫酸を加えて酸性とし, 5.00 × 103mol/L過マンガン酸 カリウム水溶液10.0mLを加えて30分間煮沸し,試料中の有機物を完全に酸化した。 この水溶液には未反応のKMnO が残っているので, 1.25×10mol/Lシュウ酸ナ トリウム水溶液10.0mLを加えて未反応のKMnO を還元した。 この水溶液には未 反応の (COONa) 2 が残っているので, 5.00 × 10mol/LKMnO4 水溶液で滴定した ら4.85mLを要した。 また, 200mLの純水についても同じ方法で滴定(空試験とい (日本女大改) う)をしたら,KMnO 水溶液が0.15mLが消費された。以上より,この試料水の CODの実測値を有効数字3桁で求めよ。 くう

回答募集中 回答数: 0
現代文 高校生

なぜこの文章からナバホが子どもの自立を尊重し、ユダヤ人が子ども達を大人と同様に教育していることが分かるのか教えてほしいです。

自身の経験も異なってくる。 H. ( 1)、ナバホ・インディアンは子どもを自立したものと考え、部族の行事のすべ てに子どもたちを参加させる。子どもは、庇護されるべきものとも、重要な責任能力が ないものとも看做されない。子どもの言葉は大人の意見と同様に尊重され、交渉ごと で大人が子どもの代弁をすることもない。子どもが歩きだすようになっても、親が危険 なものを先回りして取り除くようなことはせず、子ども自身が失敗から学ぶことを期待 する。こうした子どもへの信頼は、われわれの目には過度の放任とも見えるが、自分と 他者の自立を尊重するナバホの文化を教えるのにもっとも有効な方法であるという。 (2)、東ヨーロッパの伝統的なユダヤ人コミュニティーでは、知識が豊かである ことは道徳的に正しいことであると考えられており、男児の(男児に限られていたが) 教育にたいへん関心が払われた。赤ん坊のちょっとしたしぐさも、知的早熟の兆しでは ないかと見られたし、五歳ごろにはもう正式の教育が始められた。幼児であっても、ほ 2 かの年齢の子どもに混じって週に五日間、午前八時から午後六時までの勉強が課せられ、 終生続けられるべき学問のための訓練が施された。

回答募集中 回答数: 0
数学 高校生

この、右のページでやっていることが、なぜ成り立つかわかりません

370 340 第9章 整数の性質 不定方程式 y 次のような方程式を考えてみます. -2231x+409y=1 2231x+409y=1 ...... (*) これを満たす実数x、yの組は無数に存在しま す.実際,この式を 1 409 この直線上すべての 点(x,y) が解となる 1 2231 1 y=-- x+· 2231 409 409 -x と変形すると,これはry 平面上の直線となるの で,この直線上のすべての点(x,y) がこの方程式の解となるわけです. 一般に,文字の数が等号の数より多い方程式は解を定めることができません。 このような方程式のことを不定方程式と呼びます.特に,(*)のようにxy の一次式で表されるような不定方程式を一次不定方程式と呼びます. さて,ここで考えたいのは次のことです. 不定方程式 2231x+409y=1 ......(*) は りがともに整数であるような解(整数解)を持つだろうか? これは意外に難しい問題です。 実数の範囲では無数に解を持ったとしても 整数の範囲では解を持つかどうかすらアヤシイのです. 結論から先に言えば (*)の整数解は存在する のです.では,それをどうやって示せばいいのでしょう. 妖怪が存在すること を示す最もストレートな方法は,妖怪を捕まえて連れてくることです. それと 同じで,整数解の存在を示す一番の方法は、 具体的に整数解を作ってみせるこ とです.ここで役立つのが,先ほど扱ったユークリッドの互除法なのです. (*)のxyの係数 2231 と 409 に注目し, これをユークリッドの互除法の 要領で「割り算」 していきましょう. すると, 3段階目で余りに1が現れます. 2231=409×5+186 ......① 409=186×2+37 186=37×5+1 1が現れた! ...... 2 余りに1が現れたということは, 2つの数の最大公約数は 1 つまり2数は 互いに素であるということです. これはとても重要なポイントなので、頭に入 ておいてください 341 ことは,これらの式を逆にたどるよ にして1を元の2数を用いて表す」 ことです。 具体的には,次のような作 になります。 ⑦→ ④→ ← 1=186-37 × 5 ③ より =409×(-5)+186 × 11 186-409-186×2)×5②より37=409-186×2 =409×(-5)+(2231-409×5)×11-0) =2231×11+409 × (-60) - 186-231-409×5 まず、③により1が 「186と37」 を用いて表され(ア), そこに②を使うと 「409 と 186」 を用いて表され(イ), さらに①を使うと1が 「2231409 」 を用いて表されます(ウ) ウの式は,まさに(*)の整数解 (の1つ)が であることを教えてくれます。 x=11,y=-60 さて、先ほど注意したように,このようなことができたのは, そもそも の係数 2231 409 の最大公約数が 1 つまり互いに素であったからです。 つまり、一般に次のことが成り立つことがわかるのです. 不定方程式の整数解 bが互いに素な整数であるとき 1次不定方程式 ax+by=1 は整数解を持つ ユークリッドの互除法を用いれば, 一次不定方程式の整数解を具体的に作り 出すことができます.ただし,このやり方で見つかる整数解は、あくまで不定 方程式の整数解 「の1つ」であり,それがすべての解であるわけでも、あるい は最もシンプルな解であるわけでもないことには注意してください。 当然次なる興味は,1次不定方程式の「すべての整数解」を求めることは きないかということになります.この「すべての整数解」のことを次 定方程式の一般解といいます。その求め方は後ほど詳しく説明しますが、実 「すべての」 整数解を求めるためには, 少なくとも「1つの」 整数解を自 求めなければなりません.そこで,まずは先ほどの作業で「1つの」整数 求める練習をしっかりとしておきましょう。

回答募集中 回答数: 0
国語 中学生

論説文・説明文の問題です。空白のところを教えて欲しいです。よろしくお願いします

0 -7 国ス 中3 1 第六銀座 次の文章を読んで、あとの問いに答えなさい。 価値観の相対化した現代社会においても、「一般的に認められるような価 がまったくないわけではないし、価値観や信条の異なる人々が共通して 「価値がある」と認めるような対象や行為はやはり存在する。それは「客観 的に正しい価値」とは言えないが、多様な立場の人々が共通して認める価値 ふへんせい であり、そこに私たちは価値の普遍性を確信することができる。そして、こ5 のような意味での「価値の普遍性」を「一般的他者の視点」から導き出すこ とは、決して不可能な試みとは言えない。 では、価値観や信条、関心の異なる人々が共通して「価値がある」と認め るような対象や行為とは、一体どのようなものであろうか? A 関心や価値観が異なる人間であっても、一生懸命にがんばって10 その道に精進していれば、その「努力」は承認してくれるだろう。陸上部 で毎日練習を積み重ねている人間に対しては、誰もが「陸上に関心はないが、 あの練習量は大したものだ」と思うだろうし、仕事や勉強に励んでいる人間 に対しては、どのような価値観や立場の人であっても、普通はその努力を認 めるはずである。それは、当人が目指していた表現や結果への評価ではない5 が、その人自身のあり方に対する承認という意味で、自己価値の確信に深く 関わっている。 実際、何らかの努力をしている多くの人が、価値観や感性の異なる人々で も、自分の努力は認めてくれるだろう、と心のどこかで思っている。私たち は多くの場面で「一般的他者の視点」を想定し、一般的承認の可能性を暗々20 裏に確信しつつ行動しているのである。「努力」の他にも、「やさしさ」や 「勇気」「忍耐力」「ユーモア」など、関心や価値観が異なっていても共通し て認められる可能性を持つ価値は存在する。そして私たちはこのような価値 に関わる行為をしているとき、普通は誰でもこの「努力」(あるいは「やさし (E) (4) (3)

回答募集中 回答数: 0
化学 高校生

問5番で、Fe3+の物質量は単純に、1.0×0.002×1 で求めてはいけないのはなぜですか。あと0.45っていう数字はどこから来てますか

(6) イク 血液中の老廃物を除去するのに, セルロースの中空糸が利用されている。 (8)限外顕微鏡で観察すると, コロイド粒子は不規則な運動をしている。 (イ) ゲル化 する。 (ア) 透析 (キ)親水コロイド (ク) 保護コロイド (ウ) 凝析 (エ) 塩析 (オ) 吸着 (ケ)チンダル現象 (カ) 電気泳動 (コ) ブラウン運動 問題 B 心は重要な必須問題。時間のないときはここから取り組む。 3 1 14 155□□ コロイド溶液 次の実験操作について, あとの問いに答えよ。 ただし、 塩化鉄(III) FeCl の式量は 162.5 とする。 ① 1.0mol/L塩化鉄(II) FeCl 2.0mL を沸騰水に加えて 100mLとした(図)。 ② ①で得られた溶液をセロハン膜で包み, 純水を入れた ビーカーに10分間浸した。 ③ ビーカー内の水を2本の試験管 A,Bに取り,Aに は BTB溶液, B には硝酸銀水溶液を加えた。 FeCl 水溶液 沸騰水- ④ セロハン膜内に残った溶液を2本の試験管C,Dに取る。 Cに少量の硫酸ナトリ ウム水溶液を加えると沈殿を生じた。一方,Dにゼラチン水溶液を加えた後,Cと同 量の硫酸ナトリウム水溶液を加えたが,沈殿は生じなかった。 (1) 操作① で起こった変化を化学反応式で書け。 (2)操作③の試験管 A, B ではそれぞれどんな変化が見られるか。 (3)操作で、ゼラチンのようなはたらきをするコロイドを一般に何というか。 (4)一般に,正に帯電したコロイド粒子からなるコロイド溶液を凝析させるのに、最 も少ない物質量で沈殿を生じさせる電解質は次の(ア)~(オ)のうちどれか。 (ア) NaCl (オ) Nas PO4 (5)生じた酸化水酸化鉄(Ⅲ) FeO (OH)のコロイド溶液の浸透圧を27℃で測定したと ころ, 3.4×10° Paであった。 このコロイド粒子1個には平均何個の鉄(Ⅲ) イオンを 含むか。 ただし, コロイド溶液の精製時にFe" の損失や水の増減はないものとする (イ) AICl3 (ウ)Mg (NO3)2 (エ) Na2SO4 14 コロイド 1

回答募集中 回答数: 0