学年

質問の種類

数学 高校生

答えがないので、問3.4.5の答えが合っているか見ていただきたいです🙏🏻お願いします🙇🏻‍♀️

に 数と式 0でない定数項の次数は0とする。 数 0 の次数は考えない。 着目する文字を含まない項を定数項という。また, 例 3 多項式 x+ax2+bx-2c はxについて3次式である。 の係数は1, x2の係数は α, xの係数は6, 定数項は2c 5 5 問3 次の多項式はxについて何次式か。 また, 各項の係数と定数項を答えよ。 (1) 2x-13次式 12-1 (2)x2+(a+b)x+αb 2次式 atb :ab 例 4 多項式 xy+y2+1 は, xについて3次式であり, yについて2次 式である。 また, xとyについて4次式である。 問4 10 次の多項式は、[ ]内の文字について,それぞれ何次式か答えよ。 2次式 (1)x-xy2 4次式 x][y][xとy]ら株式 10 15 (2)x+axy+axy2+y[x],[y][xとy] 4次式 3次式 4次式 多の整理 xについての多項式 5x2+x-2x2+1 において, 5x2と2x2のように, 文字の部分が同じである項を同類項という。 15 同類項は, 5x²-2x2=(5-2)x2 =3x2 : a ( 20 のように1つにまとめることができる。 多項式は、ある特定の文字に着目し, 7x2+4x+8 のように各項を次数 の高い方から順に並べて整理することが多い。 このことを降べきの順に 整理するという。 また, 8+4x+7x2 のように次数の低い方から順に並べ ることを昇べきの順に整理するという。 20 例 5 多項式 x2+2x-1-4x²-6x+3 を降べきの順に整理すると, (1-4)x2+(2-6)x+(-1+3)=-3x²-4x+2 25 問5 次の多項式を xについて降べきの順に整理せよ。 (1)3x²-5x+6-5x2+2x-3 (2)2bx+x+5c-ax2+bx =3x5x²-5x+2x+6-3 =x-ax+bx+5c -2x^2-3x+3

解決済み 回答数: 1
数学 高校生

四角で囲った部分ってどうして必要なんですか?? f(x)は多項式ということは、f(x)=c(定数)というのはありえないと思いました。

42 X 重要 例題 21 等式を満たす多項式の決定 0000 多項式f(x)はすべての実数xについてf(x+1)-f(x)=2x を満たし、 であるという。 このとき, f(x) を求めよ。 f(0) 指針 例えば,f(x) が2次式とわかっていれば,f(x)=ax2+bx+cとおいて進めること できるが,この問題ではf(x) が何次式か不明である。 .... f(x)はn次式であるとして,f(x)=ax"+bx-1+(a≠0, n≧1) とおい 進める。f(x+1)-f(x) の最高次の項はどうなるかを調べ, 右辺 2x と比較する とで次数nと係数 αを求める。 なお,f(x) = (定数) の場合は別に考えておく。 基 2 3 f(x)=c(cは定数) とすると, f (0)=1から f(x)=1 この場合 れないため、別に考え いる。 解答 これはf(x+1)-f(x)=2x を満たさないから、不適。 よって, f(x)=ax+bxn-1+...... (a≠0, n≧1) (*) とす ると f(x+1)-f(x) I+ =a(x+1)"+6(x+1)"'+…………..- ·−(ax+bx^-1+......) =anx-1+g(x) ただし, g(x)は多項式で,次数はn-1より小さい。 f(x+1)-f(x)=2xはxについての恒等式であるから, 最 高次の項を比較して ①から n-1=1 ・①, n=2 an=2.. ② ゆえに、②から a=1 このとき,f(x)=x2+bx+c と表される。 f(0)=1から c=1 (x+1)^ =x"+"Cix-1+C24 のうち, a(x+1)"+ax"の影 次の項は anx"で、 りの項は2次以下 なる。 anx1と2.xの次数と 係数を比較。 またf(x+1)-f(x)=(x+1)+6(x+1)+c-(x2+bx+c) c=1としてもよいが、 よって =2x+6+1 2x+6+1=2x この等式はxについての恒等式であるから すなわち b=-1 したがって f(x)=x-x+1 結果は同じ b+1=0 係数比較法。 POINT 次数が不明の多項式は, n次と仮定して進めるのも有効

解決済み 回答数: 1