学年

質問の種類

数学 高校生

129. 記述これでも大丈夫ですか??

JUL 510 OS 00000 基本例題1291次不定方程式の応用問題 3で割ると余り, 5 で割ると3余り, 7で割ると4余るような自然数nで最小の ものを求めよ。 指針▷ 基本 127,128 が共通の数。 8が最小である。 3で割ると2余る自然数は 2,5, 8, 11, 14, 17, 20, 23, 5 で割ると3余る自然数は 3, 8, 13, 18,23, よって、「3で割ると2余り, 5 で割ると3余る自然数」を小さい順に書き上げると 3と5の最小公倍数 15 ずつ大きくなる。 A8, 23, 38, 53, 68, また, 7で割ると4余る自然数は B 4, 11, 18, 25, 32, 39,46,53, A,B から、求める最小の自然数は53 であることがわかる。 このように、書き上げによって考える方法もあるが,条件を満たす数が簡単に見つからな い (相当多くの数の書き上げが必要な) 場合は非効率的である。 -110/ そこで,問題の条件を1次不定方程式に帰着させ、その解を求める方針で解いてみよう。 CTORUTSJEFE 解答 nはx,y,zを整数として,次のように表される。 注意x+2=5y+3 3)=0 S&TS 5y+3=7z+4 n=3x+2, n=5y+3, n=7z+4 小 3x+2=5y+3 から 3x-5y=1 x=2, y=1は, ① の整数解の1つであるから 3(x-2)-5(y-1) = 0 すなわち 3(x-2)=5(y-1)x 3と5は互いに素であるからんを整数として, x-2=5kと表 される。よって x=5k+2(kは整数) ② bom) 3(5k+2)+2=7z+4 ② を 3x+2=7z+4に代入して ゆえに z=-8, k=-4 は、 ③の整数解の1つであるから 7(z+8)-15(k+4)=0 すなわち 7(z+8)=15(+4) 7と15 は互いに素であるから, lを整数として,z+8=157 と 表される。 よって z=151-8 (Zは整数) (Thom) これをn=7z+4に代入して n=7(157-8)+4=1057-528 最小となる自然数nは, l=1 を代入して 53 TE bom) 85-= として解いてもよいが,係 数が小さい方が処理しやす い。 このときy=3k+1 x-7z=2から 7z-15k=4...... ③③ A+ASA-=(A+10)-06-3(x-3)−7(z−1)=0 ゆえに, Zを整数として x=7l+3 これと x=5k+2 を等置し て 5k+2=7l+3 よって5k-71=1 これより, k, lが求められ るが, 方程式を解く手間が 1つ増える。 検討 百五減算 2+(3=376)00=1+00=178 ある人の年齢を3,5,7でそれぞれ割ったときの余りをa,b,c とし, n= 70α+216+15c とす る。このnの値から 105 を繰り返し引き, 105より小さい数が得られたら、その数がその人の年 齢である。 これは 3,5, 7で割った余りからもとの数を求める和算の1つで、 百五減算と呼ばれ る。なお,この計算のようすは合同式を用いると,次のように示される。 求める数をxとすると, x=a (mod3), x=6 (mod5) x=c (mod7) であり, n=70a=1•a=a=x (mod 3), n=21b = 1.b = b = x (mod 5), n=15c=1+c=c=x (mod 7) よって, n-xは3でも5でも7でも割り切れるから, 3, 5, 7 の最小公倍数 105 で割り切れる。 ゆえに,を整数として, n-x=105k から x=n-105k このkが105を引く回数である。 TRON 練習 3で割ると2余り,5で割ると1余り, 11で割ると5余る自然数nのうち (3) 129 1000 を超えない最大のものを求めよ。 どのよう できない 3m よー 解答 mnは食 [1] n= よって, x=3m- [2] n= ここで. よって ......) [3] n= ここで よって ......) [1]~[3] 形に表す よって, したが一 (検討 次ペー しかし 然数も なお、 a

回答募集中 回答数: 0
数学 高校生

数学1A (2)からが分かりません💦 教えていただけると幸いです( . .)"

太郎 : でも, x0, 1,2,…と代入して調べていくのはちょっと大変だから、別の方法はないかな。 例えば、①を変形して, x=- 1-17y ③ として考えてみるよ。 xは整数だから ③ にお 7 ける17yは7で割ると余る数だね。 花子: 面白い考えだね。 それなら17を7で割ると余りが3だから、それを利用すると,③は, 1+7(-2y)-3y=-2y+1-31 となって, 3yは7で割ると 余る数だね。 太郎 : すると, 17y や 3y と同様に,yは7で割るとオ 余る数ということかな。 花子: 本当かな。 yを7で割った余りをとすると, lを整数として, y = 71+ ができて、そこから考えるとyは7で割るとキ余る数だよ。 x= (2) オ キに当てはまる数を求めよ。 また, ⑩~③のうちから一つ選べ。 m(mは整数) ①mmは0以上6以下の整数) 7m (mは整数) ③7mmは0以上 6以下の整数) 太郎 : y = キ を③に代入してみると, x=-クケ つだね。 花子: y = 7l+ト キを③に代入してみると, 方程式 ①の整数解は x=- ウエルークケ y= ......4 (Iは整数) となるね。 太郎: あれ、②と④は異なるから、どちらか一方は間違いなのかな。 花子 : どちらも正しい答えだよ。 コ という関係になっているよ。 太郎: なるほど。(a) 7セイ は7で割ってキ余る数ということだね。 整数解の表し方は (b) いろいろあるけれど、意味は同じなんだね。 整数とする ⑩7n+10 ①7m+20 x== (3) クケに当てはまる数を求めよ。 また, つ選べ。 Ⓒ1=k ① 1=k+1 ② l=k-1 3 1=-k (4) 下線部(a)について、7で割ってキ余る数を、次の⑩~⑤のうちから一つ選べ。 ただし、nは サ ウエ k+ クケ クケ ウエk+ クケ ウエ k- に当てはまる最も適当なものを、次の 7n+30 3 7n-10 4 7n-20 5 7n-30 (5) 下線部(b)について, 方程式 ① の整数解として正しいものを、次の①~③のうちから一つ選べ。 た だしは整数とする。 ⑩ x = - ①x= ウエ k- ②x=1 y=7k- キ y=-7k+ キ y=-7k- キ と表すこと クケ + y=+ ア, y=7h+キ は方程式 ① の整数解の一 に当てはまるものを、次の⑩~③のうちから一 (配点 15) 公式

回答募集中 回答数: 0