学年

質問の種類

数学 高校生

(2)の解き方を教えてください😫答えは2です💦

[2] △ABCにおいて, BC = α, CA = 6, AB =c, ∠A=A, ∠B=B, 2つの等式 bcos B = ccosC•••• ①, bsin B=csinC ......② がそれぞれ成り立つとき,△ABCはどのような形状であるかを考察する。 等式①についての考察・ 余弦定理を用いて, cos B を a, b, c を用いて表すと, cosB= ( である。 COS C についても同様に α, b, c を用いて表し、 ①に代入して式変形すると (A) って (イ) または (ウ) が得られる。 (イ) のとき,△ABCは二等辺三角形であり, (ウ) のとき, △ABC は直角三角 形である。 等式②についての考察 正弦定理を用いて、 ②を辺の長さの関係式にすると,△ABCの形状がわかる。 以上により, △ABCにおいて,等式①が成り立つことは等式 ②が成り立つための をα, b c を用いて正しくうめよ。 (1Xi) (茸) (イ) で答えよ。 (エ) 。 (ウ) に当てはまるものを、次の1~6のうちから一つずつ選び,番号 1 a=b 4a+b2=2 2b=c 562+2=d2 c=a 6 c²+a²= b² また、 (A)に入る (イ) (ウ) を求める過程を(A)の解答欄に記述せよ。 (3) に当てはまるものを,次の1~4のうちから一つ選び、番号で答えよ。 1 必要十分条件である 2 必要条件であるが,十分条件ではない 3 十分条件であるが, 必要条件ではない 4 必要条件でも十分条件でもない (配点 10)

回答募集中 回答数: 0
数学 高校生

緑のマーカーの条件がどこに書いてあるかわからないです💦

B2 [1] ∠BAC が鈍角の ABCがあり、 10√2 である。 (1) sin ∠BAC の値を求めよ。 (2) 辺 CA の中点をMとするとき, 線分 BMの長さを求めよ。 また, △ABM の外接円の 半径を求めよ。 (配点 10 ) [2] △ABCにおいて, BC = 4, CA = b, AB = c, ∠A=A, ∠B=B, ∠C=C とする。 2つの等式 bcos B=ccosC・• ①, bsin B=csin C ...... ② がそれぞれ成り立つとき, △ABCはどのような形状であるかを考察する。 等式①についての考察 余弦定理を用いて, cos B を a, b, c を用いて表すと, cosB= 5 である。 COS C についても同様に a, b, c を用いて表し、 ① に代入して式変形すると (A) って (イ) または (ウ) が得られる。 (イ) のとき,△ABCは二等辺三角形であり, (ウ) のとき, △ABCは直角三角 形である。 等式②についての考察 正弦定理を用いて, ②を辺の長さの関係式にすると,△ABCの形状がわかる。 以上により, △ABCにおいて, 等式①が成り立つことは等式 ②が成り立つための (エ) (1Xi) ( を a, b, c を用いて正しくうめよ。 (イ) (ウ) に当てはまるものを,次の1~6のうちから一つずつ選び、番号 で答えよ。 1 a=b 4 a²+b² = c² 2b=c 562+2=12 3 c=a 6 c²+a²= b² また、 (A)に入る (イ) (ウ) を求める過程を(A)の解答欄に記述せよ。 (2) (エ) に当てはまるものを,次の1~4のうちから一つ選び, 番号で答えよ。 1 必要十分条件である 3 十分条件であるが, 必要条件ではない 4 必要条件でも十分条件でもない 2 必要条件であるが,十分条件ではない (配点 10)

回答募集中 回答数: 0
数学 高校生

(2)の問題なんですけど、2枚目に撮ったところが分からなくて…私は解説の横に書いた手書きの図なんですけど、こうなると思って計算したら間違えてしまいました。なぜ3、5、aがあの場所になるのか解説してくだされば幸いです、宜しくお願い致します🙇

(例題79) (1) 次の三角形は鋭角三角形, 直角三角形, 鈍角三角形のいずれか a=3,b=10,c=8 3辺の長さが, 3, 5, a a この値の範囲を定めよ。 の三角形が鋭角三角形となるように正の数 E ポイント (1) 最大角は最大辺の対角( (2)鋭角三角形とは,三角形が成立し, かつ鋭角三角形 と考えます。鋭角三角形になる条件は, Aが鋭角かつBが鋭角 wwwww パターン(74) だからBになります。 三角形が成立しなければ 鋭角条件を満たしても 意味ないよね と考えます。 ポイント B C この三角形では,最大角はAかBかわからない。 Cだけはありえない 解答 ∴AとBの両方が鋭角になれば鋭角三角形!! (1)最大角はBである。 よって 82+32-102__27 cosB= 2.8.3 (2) 三角形の成立条件より, より、鈍角三角形。 48 負 [3+5>a ••• ① 3辺を図のようにおく 3+α> 5 ... ② C la+5>3 ...③ B (5) また,鋭角三角形になるための条件はa>0より 4 0<a<v34 (3) COSA= 3²+5²-a² 2.3.5 lcosB= 32+α²-52 >034-a>0 ...④ ->0a²-16>0 2.3.a これより,4<a<√34 ① (2) -202 4 √34 8 a >0より a>4 パターン79 鋭角三角形, 鈍角三角形 171

未解決 回答数: 2
英語 高校生

この文章を35~40単語でわかりやすく要約して欲しいです

The Story of Holly Butcher 目標時間2分11秒 act Part 1 haky A 本文をスラッシュ(/)の区切りに注意して読んでみよう。また、必要な書き込みをしよう A Note Before I Die ●込もう。 abioW weИ [1] I've had a lot of time / to think about life / these past few months, and I want to share/ some of my thoughts. It's a strange thing / to realize and accept / that you're mortal/ at the age けて単! 2b10W w9M of 26. But the clock keeps ticking / and I know / death is fast approaching. I always imagined myself growing old / with wrinkled skin and grey hair / after raising a beautiful and loving family. Even now / I still want that so bad / that it hurts. [2] Life is fragile, precious, and unpredictable, and each day is a gift, / not a given right. I'm 27 years old now. I love my life and I am happy. I don't want to leave the world, / but that decision is out of my hands. [3] I'm not writing “A Note Before I Die" / so that people will fear death. In fact, it's good/ that we are not constantly thinking / about its inevitability. For the most part, / death is often considered a "taboo" topic, / especially among young people. I want people to remember/ that we all suffer the same fate / in the end. So, stop worrying / about the little issues/ that cause meaningless stress / in everyday life. Whenever you start complaining / about unimportant things,/think about those people / who are actually facing serious problems / and be grateful/ that your problems are minor ones. Take a deep breath of the fresh air, / and be thankful/that you are able to breathe it in. 1. H OP 訳 2. 22 訳 3. 33 activity B 各段落のトピック

回答募集中 回答数: 0