学年

質問の種類

数学 高校生

これの答えを教えてください! 解答がなくて答え合わせができず、困ってます😭

196-197 ません) らない) つくるこ をすべき とつくる 続けら -199 だ) た) ―には の意 Knot 0 B30 XOT XEXERCISES ES 不定詞① (名詞用法) ⑤ [ ]内の意味に合うように、不定詞を使って英文を完成させなさい。 (1) Ann wants to know a teacher. [教師になる方法] (2) I know (3) Sam didn't know (4) I haven't decided that book. [どこで買えばいいか] [何を言えばいいのか lood to of DoverIO for Canada yet. [いつ出発すべきか] HOUSTI RISTONSSON 0 ⑥6 日本語に合うように( (1) 大切なのは、だれにもうそをつかないことだ。 The important thing (to /is/lie / not) to anyone. )内の語句を並べかえ, 全文を書きなさい。 16 SORTIR D aslood to fol a basi PASA d'evil of a to guidool a'ade z (2) 彼女があなたに怒っているのは当然だ。 It is (for / natural / you / angry with / be / to / her). om gloro base on avail I as 宝不さ玉会 3 om eqlar barst on (3) 妹が夜ふかしするのはめずらしいと思う。 (2) I think (unusual/my sister / stay / to / it's / for) upl late. 100 Lat of yu tead sillal terW HIS GJELDED MIROS PROSVITU TOGE (4) 私の長所は,決して落ちこみすぎないことだ。1000 ( My good point (be / to / depressed / is / too / never) of a bit uovo woH C (1) CONST 8 7 与えられた状況に合うように ( )内の語句を並べかえ, 全文を書きなさい。 ただし, 不要な語 句が1つずつ含まれています。 CD (1) 状況 医師から食生活を改めるよう言われたので、私は…。 I (not/ eating / eat / decided / a lot of /to/ sweets). 07-11-not eating/cated 13/2014 bro bothate 7 of advice. BORARSTO ENNUJAS LEBET CAS (2) 状況 ルーシーは最近悩みがあり、だれかに相談したいのですが・・・。 he of htpal chu Lucy doesn't (ask/know/who / for /to/ bawala a no ixats qode of CUS LOT- (3) 状況 最近, 地震が多いことを受け, ホームルームで先生がひと言。 We had better (what / case/ do / consider / to / of / in / doing) emergency. JON TOTO + ton en 08) a 16 red blor. I 8 [ ]内の語を参考にして~…に自由に語句を入れ, オリジナルの英文をつくりなさい。 れ、オリジナ 28-1-571-7 CD (1) 私が~することは簡単だ。 [easy / to ] (2)~(人)は私に….する方法を教えてくれた。[teach] 51

回答募集中 回答数: 0
数学 高校生

(2)線を引いたところから分かりません💦 教えてください😭

=) 基本例題 43 対偶を利用した命題の証明 文字はすべて実数とする。 対偶を考えて、次の命題を証明せよ。 (1) x+y=2 ならば「x≧1 またはy≦1」 (2) ²+626 ならば 「la +6/>1 または |a-6|>3」 CHART & SOLUTION 対偶の利用 命題の真偽とその対偶の真偽は一致することを利用 (1) x+y=2 を満たすx,yの組(x, y) は無数にあるから、直接証明することは困難であ る。 そこで,対偶が真であることを証明し,もとの命題も真である, と証明する。 条件 「x≦1またはy≧1」の否定は 「x>1かつy>1」 (2) 対偶が真であることの証明には,次のことを利用するとよい。 A≧0, B≧0 のとき A≦B ならばA'≦B2 (p.118 INFORMATION 参照。) 解答 (1) 与えられた命題の対偶は 「x>1かつy>1」ならば x+y=2 これを証明する。 x>1, y>1 から x+y > 1+1 すなわち x+y >2 よって, x+y=2 であるから, 対偶は真である。 (IN したがって,もとの命題も真である。 員 (2)与えられた命題の対偶は 「|a+b≦1 かつ |a-6≦3」 ならば d² +626 43 これを証明する。 |a+b|≦1,|a-6≦3から (a+b)²≤1², (a−b)² ≤3² (a+b)²+(a−b)² ≤1+9 よって ゆえに よって したがって,もとの命題も真である。 2(a²+6²) ≤10 a²+62≦5 ゆえに, 対偶は真である。 p.76 基本事項 6 r=as+2 POINT 条件の否定条件 p, g の否定を,それぞれ , gで表す。 かかつかまたは g PNQ=PUQ pまたはg かつ PUQ=PnQ ⇒αの対偶は gp <x>a,y>6 ならば x+y>a+b (p.54 不等式の性質) |A|²=A² a+b2≦5 56 から a²+ b² <6 30 79

回答募集中 回答数: 0