学年

質問の種類

数学 高校生

225. [2]で、f(x)は常に単調増加する、というのは 「x≧においてf(x)は常に単調増加する」ということですよね? y=x^3は極値は持たないけど単調増加でも単調減少でもないですよね??

t)(x-t) その 鹿児島大 演習 223 道 219 参照。 すると き, t = 0, [u [の] ~極大,他方で引 のとき ると 3 演習 例題225 不等式が常に成り立つ条件(微分利用) 0000 aは定数とする。 x≧0 において,常に不等式 x-3ax²+4a>0が成り立つよう にaの値の範囲を定めよ。 のとき 指針f(x)=x-3ax2+4aとして, 検討参照。 [1] 2a < 0 すなわちα<0のとき (神号同側) [x≧0 における f(x) の最小値] > 0 となる条件を求める。 導関数を求め,f'(x)=0 とすると x=0, 2a 02a の大小関係によって, f(x) の増減は異なる から 場合分けをして考える。 解答 f(x)=x-3ax2+4a とすると f'(x)=3x²-6ax=3x(x-2a) ......... f(x)=0 とすると x=0, 2a 求める条件は,次のことを満たすαの値の範囲である。 「x≧0 におけるf(x) の最小値が正である」 ・・・ (1) ①を満たすための条件は x≧0 におけるf(x) の増減表は右のよう になる。 ① を満たすための条件は したがって a>0 これはα<0に適さない。 [2] 2a=0 すなわち α = 0 のとき f'(x)=3x2≧0, f(x)は常に単調に増加する。 f(0) = 4a>0 4a>0 よって a>0 [ [3] 20 すなわちa>0のとき x≧0 におけるf(x) の増減 表は右のようになる。 ①を満たすための条件は -4a³+4a>0 これはα=0 に適さない。 20 f'(x) f(x) 4a -4a(a+1)(a-1)>0 a(a+1)(a-1) <0 a<-1,0<a<1 ゆえに よって これを解くと 0<a<1 a> 0 を満たすものは [1]~[3] から,求めるαの値の範囲は 2a<0 x 0 f'(x) + f(x) 4a > 2a 0 -4a³+4a 0<a< 1 1 /1 NJ 2a0x + 2a=0 242x-x 16 がx≧0 に対して常に成り立つ - -1 [注意] 左の解答では, [1] 2a<0, [2] 2a=0, [3] 2a>0 の3つの場合に 分けているが, [1] と[2] を まとめ, 2a≦0, 2a>0 の場 合に分けてもよい。 なぜなら, 2a≦0のとき, x≧0では f'(x)≧0 であるから, x≧0でf(x) は 単調に増加する。 ゆえに,x≧0 での最小値は f(0) =4a である。 実際に左 の解答 [1] と [2] を見てみ ると,同じことを考えている のがわかる。 + a (a+1)(a-1)の符号 0 基本220 < a>0のとき a(a+1)>0 0<2a 02ax ゆえに a-1 <0 としてもよい。 1 a 343 638 関連発展問題 6章

回答募集中 回答数: 0
数学 高校生

223.) この問題で記述している 「三次関数のグラフでは接点が異なると接線が異なる」 というのは一つの接線で2つの接点を持つ方程式も存在するが、3時間数は全てそうではない、ということですか??

43の考え方で s, f(s))で接する で接するとして 致する。 =(x-8)(x-1) 下の別 は え方によるものである。 ▼st を確認する。 方程式は x-31¹+81³. めの条件は、 方程 である。 をもてばよい。 -21-2) て、 sキナである。 0000 演習 例題223 3本の接線が引けるための条件 (1) |曲線C:y=x+3x2+xと点A(1, α) がある。 Aを通ってCに3本の接線が引 けるとき,定数aの値の範囲を求めよ。 1 本〔類 北海道教育大] 基本 218 -1)-8=-8 から パー 芹求めよ。 「指針3次関数のグラフでは、接点が異なると接線が異なる(下の検討 参照) から, 曲線CA (1,α) を通る3本の接線が引ける ・曲線C上の点 (t + 31+t) における接線が A を通るようなtの値が3つある そこで, 曲線C上の点(t, における接線の方程式を求め,これが点 (1, a) を +362+t) 通ることから, f(t) =αの形の等式を導く。 。 ********* CHART 3次曲線 接点 [接線] 別なら 接線[接点] も別 解答 y=3x2+6x+1であるから, 曲線C上の点(t, ピ+3t2+t) に おける接線の方程式はy-(t+3t+t)=(3t2+6t+1)(x-t) y=(3t2+6t+1)x-2t-3t2 すなわち この接線が点 (1,α)を通るとすると -2°+6t+1=α ① 定数 αを分離。 f(t)=-2t+6t+1 とすると Fit Maasto f'(t)=-6t2+6=-6(t+1)(t-1) f'(t)=0 とすると f(t) の増減表は次のようになる。 t=±1 ( t f'(t) f(t) -1 1 0 + 0 極小 極大 7 -3 5 ... - 5 1 -1/0; 1 y=a t |y=f(t) 3次関数のグラフでは、 接点が異なると接線が異なるから, の3次方程式 ①が異なる3個の実数解をもつとき, 点Aか ら曲線Cに3本の接線が引ける。 したがって、曲線 y=f(t) と直線y=α が異なる3点で交わる 条件を求めて -3<a<5 <f(-1)=2-6+1=-3, f(1)=-2+6+1=5 < ① の実数解は曲線 y=f(t) と直線y=α との 共有点の座標。 検討 3次関数のグラフにおける, 接点と接線の関係 3次関数y=g(x)のグラフに直線y=mx+nがx=α,β (αキβ)で接すると仮定すると g(x)−(mx+n)=k(x-a)²(x−ß)² (k=0) ←接点⇔重解 の形の等式が成り立つはずである。ところが、この左辺は3次式,右辺は4次式であり矛盾して いる。よって,3次関数のグラフでは, 接点が異なると接線も異なる。 これに対して, 例えば4次関数のグラフでは, 異なる2点で接する直線がありうる ( 前ページの 演習例題222 参照)。 したがって,上の解答の の断り書きは重要である。 練習点A(0, α) から曲線 C:y=x-9x2+15x-7に3本の接線が引けるとき,定数 73sceto() 223 aの値の範囲を求めよ。 341 6章 3 関連発展問題 38

回答募集中 回答数: 0
数学 高校生

219. 解答下から2行目の 4a^2(a^2+2)>0であるから不等式から 4a^2(a^2+2)>0を消せるのはなぜですか??

2x-6x+9 223 グラフ, 2個, 1個 かる。 程式では 考える。 の実数 f'(x)=3x2-3a²=3(x+a)(x-a) = f(x) の個数に 別に 1個 き 81. Do 基本例題219 3次方程式の実数解の個数 (2) 3次方程式x3-3a²x+4a=0が異なる3個の実数解をもつとき, 定数αの値の範 囲を求めよ。 指針 方程式f(x)=0の実数解⇔ 解答 y=f(x)のグラフとx軸の共有点のx座標に注目。 3次方程式f(x)=0 が異なる3個の実数解をもつ ⇔ y=f(x)のグラフがx軸と共有点を3個もつ (極大値)>0かつ (極小値) < 0 (極大値)×(極小値) < 0 f(x)=x-3a²x+4a とする。 3次方程式f(x)=0 が異なる3個の実数解をもつから,3次関 数f(x) は極値をもち, 極大値と極小値が異符号になる。 ここで, f(x) が極値をもつことから, 2次方程式f'(x)=0 は 異なる2つの実数解をもつ。 f'(x)=0 とすると x=±a よって このとき, f(x) の増減表は次のようになる。 a>0 の場合 a<0 の場合 a x -a 0 f'(x) + 0 f(x) 極大 \ 極小 + If(-u)f(a)<0から すなわち 40² (q²+2)>0であるから したがって 3次関数では (極大値)> ( 極小値) £-x)( a<-√2, √2<a 〔昭和薬大〕 a (2a³+4a) (-2a³+4a) <0 4a²(a²+2)(a²-2) >0 a²-2>0 0 x -a f'(x) + 0 + f(x) 極大 \ 極小 > a≠0 ... 基本218 極大 演習 224 y=f(x) 0 極小 (極大値)>0, ( 極小値) < 0 QUIEM < α = 0 を満たす。 α=0のとき, f(x)=x3 と なり極値をもたない。 αの正負に関係なく, x=a, -αの一方で極大, 他方で極小となる。 (極大値)× ( 極小値) =f(-a)f(a) (a+√2)(a-√2)>0 a 【検討 3次方程式の実数解の個数と極値 - 3次方程式f(x)=0 の異なる実数解の個数と極値の関係をまとめると,次のようになる。 ② 実数解が2個 ③ 実数解が3個 ① 実数解が1個 極値の一方が 0 極値が同符号 x 極値が異符号 または 極値なし B a B B x who fere ſo we ſee h A f(a)ƒ(B)=0 f(a)f(B)>0 f(x)f(B) <0 0が異なる3個の実数解をもつとき,定数aの値 p.344 EX142 337 38 35 最大値・最小値、方程式・不等式 6章 37

未解決 回答数: 1
数学 高校生

220.2 f'(x)=0とするとx=2 x^2+2x+4=0の解は虚数解となるのです なんとなく不適かな?と思いましたが きちんとした理由などはあるんでしょうか??

338 基本例題220 不等式の証明(微分利用) 次の不等式が成り立つことを証明せよ。 (1) x>2のとき x3+16>12x (2) x>0のときx4-16≧32(x-2) 指針 p.328 基本事項 ③,基本 211 ある区間における関数f(x) の最小値がm ならば,その区間において, つ。これを利用して, 不等式を証明する。 大小比較は差を作る 例えば, f(x)=(左辺) (右辺) とする。 2② ある区間におけるf(x) の値の変化を調べる。 ( 3 f(x) の最小値を求め, (区間における最小値)>0 (または ≧0から、f(x (または0)であることを示す。 を備えるとよい。 なお, ある区間でf(x) が単調に増加することを利用する方法もある。 →x>aでf'(x)>0かつf(a)≧0ならば,x>αのときf(x) > 0 【CHART 不等式の問題 ① 大小比較は差を作る 2② 常に正⇔ (最小値) > 0 解答 (1) f(x)=(x+16)-12xとすると f'(x)=3x2-12=3(x+2)(x-2) f'(x)=0 とすると x=±2 x≧2におけるf(x) の増減表は右のように なる。 よって, x>2のとき したがって f(x)>0 x3+1612x をとる。 よって, x>0のとき したがって f'(x)=0 とすると x>0 におけるf(x) の増減表は右 のようになる。 ゆえに, x>0のとき, f(x) は x=2で最小値 0 f(x) ≥0 x-1632(x-2) (2) f(x)=(x^-16)-32(x-2) とするとの f'(x)=4x³-32=4(x³−8)=4(x−2)(x²+2x+4) Sp x=2 f'(x) f(x) DELO XC 2 0 f'(x) + f(x) 0 > +'ps+)(D5+1 SV- 2 0 + f(x)=mが成 極小 0 7 f(x)=(左辺) (右辺) 別解 (1) x>2のとき f'(x)>0 ゆえに.x>2のとき f(x) は単調に増加する。 よって,x>2のとき f(x) >f(2)=0201 すなわち f(x)>0 ◄x³-8-0 満たす実数解は x=2 のみ。 $320.27.COM BY 3 LEONA LE [] f(x) の最小値] 20

未解決 回答数: 0
数学 高校生

214. 次に2<a<3のとき 以降がわからないです。 なぜ2<a<3のときf(α)=f(α+1)とするのですか??

332 重要 例題 214 区間に文字を含む3次関数の最大・最小 f(x)=x-6x2+9xとする。 区間 α ≦x≦a +1 におけるf(x) の最大値 M(α) を めよ。 指針 まず, y=f(x)のグラフをかく。 次に, 幅1の区間a≦x≦α+1をx軸上で左側から協 しながら, f(x) の最大値を考える。 なお、区間内でグラフが右上がりなら M (a) = f (a+1), 右下がりなら M (a)=f(a) また,区間内に極大値を与える点を含めば, M (α) = (極大値) となる。 更に,区間内に極小値を与える点を含むときは, f(α)=f(α+1) となるαとαの大小に より場合分けをして考える。 NA CHART 区間における最大・最小 極値と端の値をチェック 解答 f'(x)=3x2-12x+9 =3(x-1)(x-3) f'(x)=0 とすると 増減表から, y=f(x)のグラフは 図のようになる。 [1] a+1<1 すなわち a <0のとき M(a)=f(a+1) =(a+1)³−6(a+1)²+9(a+1) =a³-3a²+4 [2] a <1≦a+1 すなわち 0≦a <1のとき よって x=1,3f(x) a= 9+√33 6 以上から a < 0, ① [4] X f'(x) + (-9)±√(-9)-4・3・4 9±√33 2・3 6 2 <a <3であるから,5√33 <6に注意してα= [3] 1≦a< 9+√33 6 練習 ⑤ 214 めよ。 ≦αのとき 1 0 |極大 4 yA 4 0≦a <1のとき M (α)=4; 1≦a< [2] 9+√33 6 a01 a+1 M(a)=f(1)=4 次に, 2 <α<3のとき f(α)=f(α+1) とすると α3-6a²+9a=α3-3a²+4 ゆえに 3²-9a+4=0 3 0 + |極小| 20 y=f(x) | [3] [4] -1- a3a+1x のとき M(α)=f(a)=α-6a²+9a 9+√33 6 M(a)=f(a+1)=a³-3a²+4 9+√33 6 ≦aのとき M (a)=a²-3a²+4; のとき M (a)=α-6a²+9a [1] 区間の右端で最大 YA 4 /11 1 1 1 4F 基本213 1 a 01 3 Na+1 [2] (極大値) = ( 最大値) YA 4F 最大 Oa 1 3 20.01 +1 [3] 区間の左端で最大 "1 11 7 V 1/ atl 最大 7 a 31 a+1 [4] 区間の右端で最大 YA ya. /3 1 a f(x)=x-3x²9x とする。 区間 t≦x≦t+2 におけるf(x) の最小値m(t) を求

回答募集中 回答数: 0
数学 高校生

(202,203) 「グラフを書け」と「グラフの概形を書け」 の違いは何ですか?? また、203を記述式で書くとき極地は増減表の後に書くべきですか?(増減表に極地は示されているので同じことを書くべきなのか?と思いました。)

るのに、次のよう 1)² 0 7 基本例題 202 3次関数のグラフ 次の関数のグラフをかけ。 (1)y=-x+6x2-9x+2 指針> ラフは次のように 解答 (1)y=-3x²+12x-9 =-3(x2-4x+3) =-3(x-1)(x-3) ① y=0 とすると 3次関数のグラフのかき方 ① 前ページと同様に,y'=0 となるxの値を求め, 増減表を作る(増減, 極値を調べる)。 ②2 グラフと座標軸との共有点の座標をわかる範囲で調べ, 増減表をもとにグラフをかく。 x軸との共有点のx座標: y=0 としたときの, 方程式の解。 軸との共有点のy座標: x=0 としたときのyの値。 CHART グラフの概形 増減表をもとにしてかく x=1,3 の増減表は右のようになる。 よって、グラフは下図 (1) (2) y'=x2+2x+1 =(x+1) 2 ① y=0 とすると 取り立つが、 x=-1 の増減表は右のようになる。 ゆえに,常に単調に増加する。 よって、グラフは下図 (2) (1) 練習 ②202 Wy 2 O 次の関数のグラフをかけ。 (1) y=2x³-6x-4 x y (2) ... (2)y= 1 0 |極小 -2 X y y ... ... K + 0 YA 3 -1 0 + -3 -1 0 .. |8|3| 3 |極大| 2 8 3 -x+x2+x+3 ○+ 170 7 基本201 7 重要 205 (1) x軸との共有点のx座標 は, y=0 として x 3-6x2+9x-2=0 (x-2)(x-4x+1)=0 これから x=2 y軸との共有点のy座標は, x=0 として y=2 (2) x軸との共有点のx座標 は, y=0 として両辺を3 倍すると x+3x² +3x+9= 0 ..(x+3)(x+3)=0 よってx=-3 y軸との共有点のy座標は, x=0として y=3 検討 (2) で, x=-1のときy=0 であるが, 極値はとらない。 なお、グラフ上のx座標が -1である点における接線の 傾きは0である。 (2) y=1/23x+2x+2x-6 p.327 EX132 (3), 317 6章 3 関数の増減と極大・極小 36 10

未解決 回答数: 1
数学 高校生

211. 増減表の解答では空欄になっているところは写真のように斜線を引いていても問題ないですかね??

330 00000 基本例題 212 最大・最小の文章題(微分利用) 半径aの球に内接する円柱の体積の最大値を求めよ。 また, そのときの円柱の高 さを求めよ。 指針 文章題では, 最大値・最小値を求めたい量を式で表すことがカギ。 次の手順で進める。 ① 変数を決め、 その変域を調べる。 ② 最大値を求める量(ここでは円柱の体積) を, 変数の式で表す。 [③3] [②] の関数の最大値を求める。なお,この問題では、求める量が, 変数の3次式で表 されるから, 最大値を求めるのに導関数を用いて増減を調べる。 なお,直ちに1つの文字で表すことは難しいから、わからないものは,とにかく文字を使 って表し、条件から文字を減らしていくとよい。 - 解答 円柱の高さを2h (0<2h<2a) とし, 底面の半径をrとすると r²=d²-h2 0 <2h<2a から 0<h<a 円柱の体積をVとすると V=лr².2h=2(a²-h²) h =-2π(h-ah) V を ん で微分すると h= V'=-2x (3h²-α²2) =-2(√3h+a)(√3h-a) 0くん<a において, V' =0 となる のは, h= のときである。 ゆえに, 0 くん<a におけるVの増 減表は, 右のようになる。 したがって, Vはん= のとき最大となる。 a 1 1/3のとき、円柱の高さは2・ よって 4√3 体積の最大値 9 そのときの円柱の高さ h 0 V' V -ла³, a 2√3 3 = 2√3 a 3 a 23 0 √3 1± 2x(a²-9²).-4√3 xa² + | 極大 a √3 a 計算がらくになるように 2h とする。 群馬 基本211 三平方の定理 変数の変域を確認。 tlas 2x25-64 1 (円柱の体積) =(底面積)×(高さ) dV dh ◄2h を V' で表す。 h = 0, αは変域に含まれて いないから 変域の端の値 に対するVの値は記入し ていない。 今後、本書の増減表は,こ の方針で書く。 ◄2л(a²-h²)h

未解決 回答数: 1