学年

質問の種類

数学 高校生

まるで囲んである部分の計算は奇関数と偶関数のを使って4分の3は消して−xの2乗を積分はできないのですか?教えてください

基本 253 放 放物線L:y=x2 と点R0, を中心とする円 C が異なる2点で接するとき (1)2つの接点の座標を求めよ。 (2)2つの接点を両端とする円Cの短い方の弧とLとで囲まれる図形の面積の を求めよ。 [類 西南学院大] が,ここでは微分法を利用して,次のように考えてみよう。 で考えた 指針 (1)円と放物線が接する条件をp.164 重要例題 104 では 接点重解 (2)円が関係してくる図形の面積を求める問題では,扇形の面積を利用することを LとCが点P で接する点Pで接線 l を共有する RP⊥l 考えるとよい。 半径が, 中心角が 0 (ラジアン) の扇形の面積は1 (1) y=x2 から y=2x 解答 の共通の接線をl とすると, lの傾きは LとCの接点Pのx座標をt(t≠0) とし,この点で 2t 5 +2- 4 4t2-5 点Rと点Pを通る直線の傾きは t-0 4t 4t2-5 3 0 RP⊥l から 2t・・ =-1 ゆえにt= 4t 4 √3 よってt=± 2 ゆえに、接点の座標は(1)( y 3-4 (2) 右図のように, 接点 A, B と点Cを定めると, RC: AC=1:√3から 5 ORA-1. RA=2-(2-2)-1 ∠ORA= 4 4 Lと直線AB で囲まれた部分の面積をSとすると S=SARBA (扇形 RBA) -- 1.1.sin 7-1.1.7 3 dx+ 2 √3 3 2 π --5(x+3)(x-4)+z 2 Fπ --(-1)√(√3)+ √33√3% - = 2 4 3105 24R BY 3 2 B π A B 4 0 練習 253 放物線 C:y=1/2x上に点P(1.212) をとる。x軸上に中心をもち点 線に接する円とx軸との交点のうち原点に近い方をBとするとき、円弧 方)と放物線 Cおよびx軸で囲まれた部分の面積を求めよ。 [類県 p

解決済み 回答数: 1
数学 高校生

微文法と積分法の範囲の極限値についてで、 1枚目の🟧のマーカーの部分で 『hが限りなく0に近づくとき』とありますが、 2枚目の問題の(1)、(2)の答えはそれぞれ4と3であって、それはhに代入する数と等しく、それぞれの( )の中身を0にするための数なのですか?? 語彙力ない... 続きを読む

次の平均変化率を求めよ。 練習 1 (1) 1次関数y=2x の, x=a から x = 6 までの平均変化率 (2) 2次関数y=-x2 の, x=2から x=2+hまでの平均変化率 B 極限値 5 例1で求めた平均変化率 2+hの値について,xの変化量んを 0.1, 0.01, 0.001, 0.0001, または -0.1, -0.01, 0.001, -0.0001, h < 0 でもよい。 のように, 0 の両側から0に限りなく近づけてみよう。 すると、下の表からもわかるように、2+hは2に限りなく近づく。 10 h -0.1 -0.01 -0.001 -0.0001 0 0.0001 0.001 0.01 0.1 2+h 1.9 1.99 1.999 1.9999 2 2.0001 2.001 2.01 2.1 このことを, りなく 代 軽くげんちら(笑 -f(a) 15 I んが0に限りなく近づくとき, 2+hの極限値は2である といい, 記号lim を用いて次のように書く。 lim (2+h)=2 h→0 A+AD 第6章 微分法と積分法 注意 んが0に限りなく近づく場合, hは0と異なる値をとりながら0に近づ くと約束する。数 例2 このような極限値の例を、ほかにも示そう。 (1) lim(4-h)=4 014 (2) lim (3+3h+h²)=3 h→0 3h とんはどちらも 終 20に限りなく近づく。 練習 次の極限値を求めよ。 2 (1) lim (6+h) (2) lim(12-6h+h²) ho h→0 ((木) 20 20 * lim は 「極限」 を意味する英語 limit を略したものである。

解決済み 回答数: 1