学年

質問の種類

数学 高校生

cos2分のθを求める問題で、半角の公式を使うところまではできたのですが、cosθをどう変えれば良いのかわからなくなったので教えて欲しいです

213 131 で sing 2倍角、半角、3倍角の公式 のとき, sin 20, cos- 0 3 2' JMART & SOLUTION 半角、3倍角の公式 sil coso, tan の値が基本 sincost, cos20 00000 cos30 の値を求めよ。 p.208 基本事項 31 cos30=-3cos0+4cos' であるから、まず 1+cos = 2 2 求める必要がある。 また, 符号に注意。 π 0 4 ちから cose<0 << cos>0 であるから cos <0 2√2 VI- (1) --2.2 3 3 1/2-2/2)=46/2 3 cost=-√1-sino= == 1- って えに sin20=2sinocos0=2・ 2√2 3 2√2 1- に COS 12 3 3-2√2 6 sin²0+cos20=1 4√2 2倍角の公式 9 40 17 加法定理 2 <B<πより, って COS 82 4 1+cos 0 023 2 -2 πT であるから 2 半角の公式 0 cos >0 の範囲に注意。 √√6 √6 3-2√2/3-2/22-1 6 2√3-√6 6 = cos30=-3cos+4cos'0 FORMATION --3.(2/2) +1(-2,2)-10/2 =-3· 3 √3-2√2 =√(√2-1)2 =√2-1 (2重根号をはずす) 3倍角の公式 忘れたら, 加法定理から \3 27 導く。 p.220 PRACTICE 138 参照。 三角関数の公式を導く 一角関数に関連する2倍角, 半角, 3倍角などの公式はたくさんある。 そのすべてを する必要はない。 元となる加法定理から導けるよう, 導き方を頭に入れておこう。 ■p.224 まとめ 参照) NCTICE 131 sin 30 の値を求めよ。

解決済み 回答数: 1
数学 高校生

数1の質問です! tに置き換えて範囲を求めるところで sin、cosをそれぞれどのように考えているのかを 分かりやすく教えてほしいです!! よろしくお願いします🙇🏻‍♀️՞

補充 例題 119 三角 0°180°のとき, y=sin'+cos 0-1 の最大値と最小値を求めよ (s) [釧路公立大 基本 60,112, 重要 そのときの0の値を求めよ。 CHART & SOLUTION aa 三角比で表された2次式 1つの三角比で表す 定義域に注意 前ページと同様に考える。 ①yの式には sin (2次) とcos (1次) があるから, 消去するのは sin である。 かくれ 件 sin'0+cos'01 を利用して,yを cos だけの式で表す。 ② cose をでき換える。 このとき, tの変域に注意。 cos0=t とおくと,0°≦0≦180°のとき -1st ま ③yはtの2次式 - → 2次関数の最大・最小問題に帰着(p.109 参照)。 で解決。 答 sin20+cos20=1より, sin'=1-cos' であるから 2 次式は基本形に変形 最大・最小は頂点と端点に注目 40'aie-1-0 2000 102000 =0nied+(0'nia-D)S sino を消去。 y=sin20+ cos 0-1=(1-cos²0) + cos 0-1812020 =-cos20+cose cos0=t とおくと,0°0≦180°から -1≤t≤1 ...... ① を tの式で表すと 満たすらを y=-f+t=- ①の範囲において,y はのは 24 基本形に変形。 -1 1 最大 41 1 01 1-2 t= で最大値 0800- 4x=1 頂点 t=-1で最小値-2をとる。 0° 0≦180°であるから 最小-2 端点 よって t=1/2となるのは、COS=1/2から t=-1 となるのは, cos0=-1から 0=60° 0=180° 0=60°で最大値 1/10=180°で最小値 -2 ◆三角方程式を解き 値、最小値をとる からの値を求める PRACTICE 1196 2001-20 08120>0SI

解決済み 回答数: 1
英語 中学生

(1) (2) (3) の問題解説して欲しいです。

(1)本文の空欄 A にあてはまるように、次のア~エの英文を正しく並べ替えましょう。 (まとまりのある文章を構成する力] ア My father looked very sad when he heard what she said. イ Two weeks later, he sold his boat. 【4点】 ウ After we arrived at San Juan Island, my mother looked at my father. エ My mothers said to the father, "You must sell the boat when we go home.” [ ]-[ ]→[] (2) 次のア~キの7つの英文を Eric の物語の流れに合うように正しく並べかえましょう。 物語の概要を読み取る力&まとまりのある文章を構成する力] ア They saw many whirlpools and some water came into the boat. 【6点 (完全解)】 イ Eric's mother got angry and said to the father, “You must sell the boat.” エ オカキ When Eric was a Junior High School student, his father bought a small motorboat. One day, his family was going to San Juan Island on the motorboat. Two weeks later, his father sold his boat. To get to San Juan Island, they must go between two other islands. His father laughed and said, “We did it! That was exciting!" [ 14[ ] [ J[ ] [ ][] (3) 本文を読み、 次の質問に英語で答えましょう。 物語のポイントを正確に読み取る力] 【各3点 ① How did he get to San Juan Island?uid ② How long did it take to go from Seattle to San Juan Island? ③ Why was it dangerous? ④ What did Eric's mother say to his father? I carfW. W

解決済み 回答数: 1
数学 高校生

写真オレンジ線部の式変形が分かりません。 教えてください!!🙇

重要 例題 110 特別な角の三角比 00000 頂角Aが36°, BC=1の二等辺三角形ABC がある。 この三角 形の底角Cの二等分線と辺AB との交点をDとする。 36° (1) 線分 DB, ACの長さを求めよ。 D (2)(1)の結果を用いて, cos36° の値を求めよ。 [類 神戸学院大 ] 基本106 B 1 C CHART & SOLUTION (1) 図をかいて角の大きさを調べると,△ABC ACDB (2角が等しい) がわかる。 DB=x とおき, 相似な三角形の辺の比を利用して方程式を作る。 (2) cos 36° の値を求めるから, 36° の内角をもつ直角三角形を作る。 (1) ∠ACB=(180°-36°+2=72° であるから ∠DCB=72°÷2=36° △ABCと△CDB において ∠BAC = ∠DCB=36°, ∠ACB=∠CBD=72° (1) D 136 よって AABCOACH BC DB から 72 B 1 C BC・CD=ABDB AB CD AD=CD=BC=1 であり, DB=x とおくと AB=AD+DB=1+x であるから,①は 12=(1+x)x よって これを解いて x=-1±√5 ① 相似な三角形を抜き出すと 考えやすい。 x²+x-1=0 1+x 1+x S 2 1 1 x>0 であるからx= -1+√√5 すなわち DB= √√5-1 B 1 C D x B 2 2 √5+1 また AC=AB=1+x=- 2 (1)から (2) 辺AC の中点をEとすると, △DCA は二等辺三角形 であるから DELAC AD=1, AE=/12AC-15+1 (2) E D 2 4 AE √5+1 よって cos 36°= AD 4 B C 15° 45 RACTICE 110 右の図を利用して、次の値を求めよ。 sin 15°, cos 15°, 45° B tan 15° D sin 75°, cos 75°, tan 75° E 1

解決済み 回答数: 1