学年

質問の種類

数学 高校生

答えを見てもよく理解できません( ; ; )教えてください🙇‍♂️

●●78 例題 5 正四角錐の側面に接する半球 右の図の正四角錐 A-BCDE におい て, AB=AC=AD=AE=3√3, BC=CD=DE=EB=6であり,内部に 半球がある。 この半球の底面は正方形 BCDE 上にあり, 球面は正四角錐の4 つの側面と接している。 このとき、 半球の半径を求めよ。 い D 解答 辺 BC, DE の中点をそれぞれM, N, 球の中心を0とする。 △ABM において AM=√√(3/3)2-3°=√18=3√2 考え方) 辺BC, DE の中点と点 を通る平面で切った断食 で考える。 3√√2 r r 6 △ABCの辺BC, CA, AF このとき, DEF の重心 中線AD と線分 E 明せよ。 とする。 CE=EA 中点連結定理から AF//ED また,BF = FA. 中点連結定理か AE//FD ① ② より 対 よってEP= 同様に,中線 それぞれ Q したがって, 交点となり, すなわち, BC = 6 より BM=CM=3 作る 3点A, M, Nを通る平面で切った断面で考える。 M 3 0 MN=CD=6より MO=NO=3 △AMO において AO=√(3/2)^2=√9=3 △AMN の面積を2通りに表すと TV=29 1/2(AM+AN)=1/2MNAO 中 が成り立つ。すなわち (3√/2+3√2)=-6.3 よって r= 3√2 2 (問題 5 正四角錐 A-BCDE の高さは12, 底面の正方形の1辺の長さは10であ る。この内部にある球が正四角錐のすべての面に接しているとき,球 A の半径を求めよ。 AH=12.ALL MH.MH=NH MN=CD=10 MH=NH=5 AM=AN=123+52=5169=13 1/12 (AM+MN+AN)=1/2MN.AH 1/2(13+10+13)=1/2x10.12 rs 3 M&HS N サ B 問題6 ABCの内心をIc それぞれP,Q,R とを証明せよ。

未解決 回答数: 1
数学 高校生

うすくまるでかこっているところが問題によって下記かがちがくてよくわかりません。教えてください。

なったと判断できる。 28 この地域のイノシシが寄生虫Aに感染している割 よって、 区間の幅が狭いのは、信頼度95%の信頼 区間である。 合を シシの感染個体の比率は 198 396 対立仮説は すると、帰無仮説は0.55, 0.55 である。 また、 今回の調査で捕獲したイノ = 0.5 である。 1 (2) (1)より, 信頼区間の両端は 0.04 12.56 1.96 =12.56±0.01568 √25 □2 帰無仮説が正しいとすると, 標本における感染個体 0.55.0.45 の比率がの分布は正規分布 N (0.55, と 396 見なせる。 よって P(-0.55 ≥ 0.5-0.551) よって, 信頼度 95%の信頼区間は 12.54432 d≦12.57568 小数第3位を四捨五入すると, 12.54mm以上 12.58mm 以下となる。 (3) 信頼区間の幅を0.008mm以下にするから,計 測回数をnとすると, (1) より 0.55 0.05 =PI 0.55.0.45 0.55-0.45 V 396 396 =P(Z|≧2) =2P(Z≧2) =0.04550 <0.05 したがって, = 0.55 という帰無仮説は棄却される。 すなわち、この地域のイノシシが寄生虫 Aに感染し ている割合は先行調査と異なると判断できる。 Let's Challenge 2 1_(1) 標本平均の平均は母平均に等しいから E(X) = 400 標本の大きさが36であるから, 標本平均の標準 偏差は 70 0.04 2.1.96. 0.008 よって n≧384.16 ゆえに、少なくとも385回計測すればよい。 布は,正規分布 N (0, と見せる。 3 (1) 帰無仮説は m = 0, 対立仮説は m≠0 である。 (2) 帰無仮説が正しいとすると, 標本における重さ の平均から表示されている値を引いた値m' の分 2.52 225 よって P(m′-01≧ 0.32) P ( \m\ 0.32 2.5 2.5 225 SHP225 =P(Z≧1.92) =2P(Z≧1.92) 0.05486>0.05 したがって, m = 0 という帰無仮説は棄却されな いにで (1)

回答募集中 回答数: 0
英語 高校生

写真の黄色い線の部分の文構造を教えていただきたいです🙇 また、 ①ifは「ーかどうか」で訳していいのか ②thisは何を指しているか ③itは何を指しているか も教えていただきたいです。 よろしくお願いします💦

Phil Hello. This is 6 Minute English from BBC Learning English. I'm Phil. Beth And I'm Beth. Phil So, Beth, we're talking about the best education systems in the world today. You went to school here in Britain. What do you think of the British education system? Do you think it could be the best? Beth I think that it's quite good, there's probably a couple of things that I personally would change about it, but I would say it's quite good, but maybe not the best in the world. Phil Well, in this programme, we're going to be talking about the Pisa rankings. Beth The rankings are based on tests carried out by the OECD, that's an international organisation, every three years. The tests attempt to show which countries are the most effective at teaching maths, science and reading. But is that really possible to measure? Well, here is former BBC education correspondent Sean Coughlan talking to BBC World Service programme 'The Global Story'. Sean Coughlan When they were introduced first of all, that was a very contentious idea, because people said 'how can you possibly compare big countries... how can you compare America to Luxembourg or to, you know, or to parts of China, or whatever?' Phil Sean said that the tests were contentious. If something is contentious, then it is something that people might argue about it's controversial. So, at first, Pisa tests were contentious because not everyone believed it was fair to compare very different countries. Beth Phil, I've got a question for you about them. So, in 2022, Singapore was top of the reading rankings. But which of these countries came second? Was it: a) The USA? b) Ireland? or, c) The UK? Phil I think it might be b) Ireland. Beth OK. Well, we will find out if that's correct at the end of the programme. A common pattern in the Pisa rankings is that the most successful countries tend to be smaller. Talking to BBC World Service programme 'The Global Story', Sean Coughlan tells us that many large countries from Western Europe don't score that highly in the rankings. Sean Coughlan They're being outpaced and outperformed by these fast, upcoming countries - you know, Singapore, or Estonia, or Taiwan, or those sort of places which we don't historically think of as being economic rivals, but I suppose the argument for Pisa tests is, if you want to have a knowledge economy, an economy based on skills, this is how you measure it. Phil We heard that many large European countries are being outpaced by smaller nations. If someone outpaces you, they are going faster than you - at a higher pace.

未解決 回答数: 0