学年

質問の種類

数学 高校生

(2)のオレンジで囲われたところが分かりません。どなたか解説お願いしたいです

(注)この科目には、 選択問題があります。(3ページ参照。) 第1問 (必答問題) (配点 30) 〔1〕 αは負の数であり a を満たす。 (1) a²+P であり Q2. であるから + である。 Blod as b qila am ol lasbi of rfil ei. エ 第1問 数と式、集合と命 2次関数 (2) (1) 出題のねらい 対称式の計算の処理ができるか。 ・平方根の計算が正確にできるか、また平方根の側の 範囲を調べられるか。 解説 <0> (1) a²+(0)+20 ここで。 =(√2)+2 ----- (0+1)(0) (+1)+20 4-4-26 あるから、 a+1--16 よって, bona mile ebuit 0 (2) an-a2<a'n-1 を満たす最小の整数nはn= キクである。 (数学Ⅰ・数 √2+√6-2+√3 an-a³<a'n-1 ala-1)<a-1 ここで、 より -2+√3>1 アドバイス 対称式 a'<1 すなわち、 9110 また。 a'>0 よって、より "> であり。 ...... (2+√3)-7+1/3-7+√18 であるから。 >7+√48 ここで。 より。 6</48<7 13<7+√18<14 よって、求めるは、 14 13 7+ 48 14 数を入れ換えても。 全く同じ式になる 式という。 例えば などは を入れ換えても同じ式になるから、、 式である。 + b. ha. の基本対称式 ここで重要なのは、 すべての対称式は基本対称式を用いて ということである。 本間において.. 1の式であり、小( 1の基本対称式である。 よって、 at12 を用いて表され、1/3のが at. 22 [の他を求められる。 式の特徴を見抜く力を養い。 典型的 に しよう。 (2) 出題のねらい 不等式で表された実故の条件について 条件十分条件の関係を考えられるか 解説 par+b..3|<2

解決済み 回答数: 1
数学 高校生

青い部分の言っている事の意味がわからないので、教えて欲しいです(*.ˬ.)"

また 脱 a 1 =a"X =a"xa""= a" a" a (²)" - (ax +) = (ab" ")" = a*b=a" x 1 a" b" b" 注意 0^(-nは負の整 数)と0°は考えない よって、 21'3' が成り立つ。 ■県東根 (定義しない)。 正の整数とするとき. n 乗すると αになる数, すなわちx=a となる数xをan乗根という。 3'=81, (-3)*=81 であるから,3と3は81の4乗根であ (5)=125であるから,-5は125の3乗根である。 なお、2乗根 (平方根) 3乗根 (立方根), 4乗根, 累乗根という。 On乗根(x=αの解) について man をまとめて 数学Ⅰでは, 「2乗する とαになる数をの 平方根 (2乗根) とい う」と学んだ。 ここは この考え方の拡張であ る。 y4 y=x" y4 y=x" 方程式xa の実数解は、曲線 y=x” と直線 の共有点のx座標であるから,実数αの 根について、次のことがわかる。 y=a a y=a Na nが奇数の場合任意の実数aに対して 0 x O Va X nが偶数の場合 1つあり、これを α で表す。 >0のとき,正と負の1つずつあり、その正の a' y=a' a' y=a' 5章 5 奇数 n:偶数 "で表す。 このとき,負の方はva である。 28 =0のとき, a = 0 とする。 <0 のとき,実数の範囲には存在しない。 なお, an乗根 α という。 でも偶数の場合でも、 が奇数の場合 については,n √0=0, a>0のときa>0 である。 注意 は今までと同 様に √ と書く。 <n が偶数のとき 負の 数のn乗根は存在し ない。 指数の拡張 ここで、αのn乗根 と n乗根 αの違いをはっきりさせておこう。 16の実数の4乗根は, 4乗して16になる実数で22 の2つある。これに対し, 4乗根 16 すなわち 16 は 4乗して 16になる正の数を意味するから, 2 だけである。 ■累乗根の性質 また >0.60から √a√√b>0 (Na/6)" =(ya)"(2/6)"=ab よって、定義から Vav6="ab ゆえに 41 が成り立つ。 ■無理数の指数 例えば,√3=1.732...... に対して, 173 1732 Ta a¹.73, a¹-732] 15 [a", a 100, a 1000, が限りなく近づく1つの実数値をαの値と定義する。 一般に,a>0 のとき, 任意の実数xに対してαの値を定めること ができ (2) がα>0,b>0 として, r,s が実数の場合 の指数法則 でも成り立つ。 16=2 <42~5も同様に証明 することができる。 <n乗して ab となる正 の数は ab <指数が有理数である数 の列。 273

解決済み 回答数: 1