学年

質問の種類

数学 大学生・専門学校生・社会人

至急🚨 帝京大学2022年の過去問の解説お願いしたいです🙇 どなたか数学が得意な方解説お願いします🙇

数学(総合) 経済・法・文・外国語・教育・医療技術・福岡医療技術学部 〔1〕次の にあてはまる数を求め, 解答のみを解答欄に記入しなさい。 ただし, 解答に根号が含まれる場合は根号の中の自然数が最小となる形とし,分母は有理化する こと。 また、解答が分数となる場合は既約分数で答えること。 (1) 整式(x+1)(x+3)(x-3)(x-9) + 16x2を因数分解すると (x2- ア イ となる。 x- (2) αを6-22 をこえない最大の整数とし, b=6-2√2-αとするとき 1 62 + +2= 62 ウ である。 (3) 集合A={9, a, a-3},B={1, 4, 26 + 1,62} について, ACBであり, a bの値がともに負であるとき, a = I b = オ である。 〔2〕次の にあてはまる数を求め, 解答のみを解答欄に記入しなさい。 ただし, 解答に根号が含まれる場合は根号の中の自然数が最小となる形とし, 分母は有理化する こと。また、 解答が分数となる場合は既約分数で答えること。 (1)a,bを定数とする。 放物線y=5x²ax+a+bの頂点が点 (2, 1) であるとき, b= であり、この放物線をx軸方向に3,y軸方向に1だけ平行移動し ウ である。 た放物線の方程式はy=5x2 + ア イ x+ (2) 2次不等式xx-2<0 を満たすすべてのが 2次不等式(x-a)(x-a-5) > 0 を満たすとき,定数aの値の範囲は設する際 as I オ Saである。 〔3〕次の にあてはまる数を求め、 解答のみを解答欄に記入しなさい。 ただし, 解答に根号が含まれる場合は根号の中の自然数が最小となる形とし, 分母は有理化する こと。 また, 解答が分数となる場合は既約分数で答えること。 円に内接する四角形 ABCD において, AB=5,BC = 3,CD=2,∠ABC=60° 2つの対角線 AC と BD の交点をEとする。 このとき, (1) AD= (2) BE ED 〔4〕次の (3) M = 0 1 p ア 3 BD = 10453 (3-2 PH エ であり, BE = E 4 5 イ 年 L 1 (1) 下の図があるクラスで行ったテストについての, 37人の得点の箱ひげ図である 四分位偏差は 四分位範囲は とき, このデータの範囲は イ ウ である。 四角形 ABCDの面積は にあてはまる数を求め, 解答のみを解答欄に記入しなさい。 ア オ 9 である。 a, b, 83, 9, 52, 79. 38, 41. 63. 35. である。 . 19 20 (点) (2) 次の10個からなるデータについて 中央値が48, 第1四分位数が38, 第3四分位 .b= エ オ である。 ただし, a < bとす 数が77であるとき,a=

回答募集中 回答数: 0
数学 高校生

126.1 解説の3行目以降の()は何をしているのですか?

504 00000 基本例題126 互除法の応用問題 (1) 2つの整数m,nの最大公約数と3m+4n, 2m+3n の最大公約数は一致す ることを示せ。 (2) 7 +48 +5 が互いに素になるような 100 以下の自然数n つあるか。 指針 最大公約数が関係した問題では, p.501 基本事項 ① (*)で示した, 右の定理を利用して,数を小さくし ていくと考えやすい。 本問のように,整式が出てくるときは,まず, 2つの 式の関係をa=bg+r の形に表す。 次に, 式の係数や次数を下げる要領で変形していくとよい。 解答 2 数A, B の最大公約数を (A,B) で表す。 口 (1) 3m+4n=(2m+3m) ・1+m+n, 2m+3n=(m+n) ・2+n, m+n=n·1+m よって (3m+4n, 2m+3n)=(2m+3n, m+n) =(m+n, n)=(n, m) したがって,m,nの最大公約数と3m+4n,2m+3nの最 大公約数は一致する。 221 DE 01 ① とおくと 2 は全部でいく p.501 基本事項 ① aとbの最大公約数 a=batr 等しい 3m+4n=a m=3a-4b [別解 2m+3n=b n=36-2a mとnの最大公約数をd, aとbの最大公約数をeとする。 ① より αと6はdで割り切れるから, dはaとbの公約数 である。 ゆえに d≤e ...... e≦d 同様に,②よりはとnの公約数で ③ ④ から d=e よって, 最大公約数は一致する。 (2) 8n+5=(7n+4)·1+n+1, 7n+4=(n+1).7-3 ゆえに (8n+5, 7n+4)=(7n+4, n+1)=(n+1, 3) 7 +4と8+5は互いに素であるとき, n+1と3も互いに 素であるから, n +1と3が互いに素であるようなnの個数 を求めればよい。 R-X10 2≦n+1≦101 の範囲に,3の倍数は33個あるから 求める 自然数は 100-3367 (個) 練習 ③ 126 (1)a,bが互いに素な自然数のとき, 3a+7b 2a+5b とrの最大公約数 差をとって考えてもよい。 3m+4n-(2m+3n) = m+n 2m+3n-(m+n)=m+2n m+2n-(m+n)=n m+n-n=m <m=dm',n=dn', a=ed', b=eb' とする ① は 'd(3m'+4n')=a d(2m'+3n')=b re(3a'-4b')=m e(36'-2a')=n ②は a=bg-r のときも (a, b)=(b, r) が成り立つ。 .501の解説 と同じ要領で証明できる。 は既約分数であることを示せ。 (2) 3n+1と4n+3の最大公約数が5になるような50以下の自然数nは全部で いくつあるか。 Op.514 EX87.88 以下 1 フ r 角 例1 た た x 例2 方 a VE x ア G C Q Ve 3

回答募集中 回答数: 0
数学 高校生

至急お願いします! 数Bの数列の問題です。 例文のS1=... のところが、何故分子が(pn-1)-(pm+1)+1 になるのか分かりません。 ですが、問題全体の解説をしていただけると助かります 一緒に練習問題も教えてくださいm(_ _)m 早めに教えていただけると幸いです... 続きを読む

0000 重要 例題 9 既約分数の和 pは素数m,n は正の整数でm<nとする。 mとnの間にあって, pを分母と する既約分数の総和を求めよ。 基本 6,7 指針 まず,具体的な値で考えてみよう。 例えば,2と5の間にあって3を分母とする分数は 8 9 7. 7. 7. 10. 12. 13. 14. 11 3'3' 3' 3'3'3 3 であり,既約分数の和は(*)の和から, 3と4を引くことで求められる。 このように、全体の和から整数の和を除く方針 で求める。 まず,g を自然数として,<_<n を満たす 解答する。 pm<g <pnであるから g_pm+1 pm+2 よって か か これらの和を とすると S₁= ①のうち, =1+11-0 g=pm+1,pm+2,......, pn-1 (pn-1)-(pm+1)+1 2 pn-pm-1 2 = p (m+n) が整数となるものは これらの和を S2 とすると S2= _=m+1, m+2, ….…, p n-m-1 2 pm+1 Þ 2 S= pn-pm-¹ (m+n) - ² 2 pn-1 か n-1 (n-1)-(m+1)+1{(m+1)+(n-1)} 2 -1/12 (m+n)(n-m) (p-1) L (*)は等差数列であり,3と4は 2と5の間にある整数である。 + 初項川未 n-m-1 2 (m+n){(n_m)p−(n_m)} -を求め · pn-1) 0>1+nd -(m+n) ゆえに, 求める総和をSとすると, S=S-S2 であるから -(m+n) 「mとnの間」であるか ら、 両端のmとnは含 まない。 pm+1 か の等差数列。 ① 初項 S= 2 ((-)-(1-x) Fuck Sin- 公差 1 -n(a+l) mとnの間にある整数。 ◄ S₁ ==—= n(a+l) (全体の和) (整数の和)

未解決 回答数: 1