学年

質問の種類

数学 高校生

図形と漸化式の範囲です。 やり方がわからないので教えて欲しいです。

図形と漸化式 (1) 本例題 35 「上の円は同一の点では交わらない。これらの円は平面をいくつの部分に分け 平面上にn個の円があって, それらのどの2個の円も互いに交わり、3個以 00000 るか。 & THINKING CHART 漸化式を作成し, 解く問題 (求める個数を αとする) 1 ai, a α3, ・・・・・・を調べる (具体例で考える) 2 an ① まず, n=1, 2, 3 の場合について図をかくと、 下のようになる。 この図を参考に、 2 平面の部分は何個増加するだろうか? n=2 とみ+1の関係を考える (漸化式を作成)・ n=1 an+1 を anとnの式で表した漸化式を作ろう。 円を1個追加すると、 ① 平面の部分は+2 (交点も+2 ) ゆえに n=3 Tran ① 5 (2) 平面の部分は +4 (交点も+4) n個の円によって平面が個に分けられるとすると」=2 平面上に条件を満たすn個の円があるとき,更に,条件を満 たす円を1個追加すると, n個の円とおのおの2点で交わる から交点が2個できる。 この2n個の交点で,追加した円 がn個の弧に分割される。これらの弧によって, その弧が 含まれる平面の部分が2分割されるから,平面の部分は 2n 個だけ増加する。 よって an+1=an+2n よって, n ≧2のとき an+1=an=2n an=a₁ + Z2k=2+2• 1² (n−1)n=n²_n+2 k=1 =2であるから, この式はn=1のときにも成り立つ。 したがって, n個の円は平面を (n²-n+2) 個の部分に分ける。 • RACTICE 35 ⑧⑨ 6 3 ⑦ 4 基本 29 ① 分割された弧の数と同じだ け平面の部分が増える。 403 ② 1歳 4 新化式 階差数列の一般項が2n n=1 とすると 1²-1+2=2 n≧2 とする。 平面上にn個の円があって,それらのどの2個の円も互いに交わり, ENE 3個以上の円は同一の点では交わらない。これらの円によって,交点はいくつできる

回答募集中 回答数: 0
数学 高校生

(ii)において全問で3次関数の接線L1を導出して、それとは別の等しい傾きの接線L2を考え、L1と囲まれた面積をS1、L2とはS2とするとS1=S2となるのですが傾きが等しい接線だからでしょうか。 解答では傾きを平方完成してt=1で対称であるためとされていますが解いていて思... 続きを読む

そして,l と傾きが等しい C”の接線が存在するのはX tキー+2 すなわち t≠1 のときである。 &」 と傾きが等しい ” の接線のうち, & でない方の接線をl2とし&と C” とで囲まれた図形の面積を S1,l2 と C" とで囲まれた図形の面積を S2 と すると,Sのグラフと l の傾きを表すグラフがともにt=1に関して対称 であることから, S1 = S2 であることがわかる。 となるので したがって, S1+S2 = 1 であるとき 3 S=S2=1/ 4 ゆえに 27(1-t)4 (1-t)4 = 16 4 1-t=± t= である。 81 2 5 2 3 3 S2 3 1 S1 iQ C" -l₁ -l₂ 8.0=0.1×8.0= -t + 2 -2t + 3 (8253272609 よって, l1 の傾きは 2 3 {(1) ² - 2.-3} = 3 - (-32) = 32 9 This HAR JO (100%* 2542120-3.0- = 88.0 × 8.0 = (2,02720)1-30=120-20 2806 S1のグラフ S₁ = l1 の傾きm を表すグラフ m=3t2-6t-9 27(1-t)4 4 =3(t-1)2-12 はどちらも t = 1 に関して 対称である。 8.0-Y 20.1 107.5875 AMAS 34 (7.02 YA ■3(t2-2t-3) にt=1/13 を 代入する。 3t2-2t-3) に t= = 1 を代入してもよい。

回答募集中 回答数: 0
数学 高校生

数学2B / 数列 イ の求め方がよくわかりません。 教えて頂きたいです🙇‍♀️

25 2 1.² 40x tod 2 5 5025 36x3 70 数学ⅡI・数学B 第3問~第5問は、いずれか2問を選択し、 解答しなさい。 第4問 180 50 (1) 太郎さんは次の操作を考えた。 ESP 操作 1 12 2種類のラーメンのスープが容器 A, B に分けて入っている。 [はじめの状態] 240×100 容器 A : 塩分濃度 1.6%のスープ 240 容器B: 塩分濃度 1.2% のスープ 360g) 太郎さんと花子さんは容器 A,Bのスープを使って, スープの塩分濃度を調整 しようとしている。 80.0 20.0 5025 96. -792 +200×100colrav 50% 容器 A から40gのスープを取り出して捨て、 次に, 容器 B から40gのスー プを取り出して容器Aに入れる。 このとき, 容器Aのスープの塩分濃度が 209.0 80$.028060 均一になるようによくかき混ぜる。 47³-32²2²-x) 98²-3x-7 (選択問題)(配点20) 1985.0 bet8.0 1018.0 ASTS.GO2.0 [はじめの状態] の容器 Aのスープ 240gに含まれている食塩の量は ア ANT CERD 2866 0DIO SUB.0 81.0 1061.0 $8310 A 8 19 96 O (2) イ イ であり、操作1を1回だけ行った後の容器Aのスープの塩分濃度は である。 なお, 操作1を1回行うたびに容器Bから40gのスープを取り出すので 回までである。 操作を行うことができる回数は 17 2 01 07 の解答群 200x1.6 1696 A 50810105005025 25 OCTLO 1840.0 の解答群 の解答群 200x 6 TEL5 ①8 1.6 100 1001.3 3 5 ELO SETAO AO CITI 2 1.2 +本日× 100-5 4 3 ②9 - 42 - 23. 15 12 24001.6 5700 = 3.6+2²2/10=3.68g 24 50 (3) 10 96 25 [1 ア 7 40 11 12 1.6 02 12 19.2 % 96 193 25 (数学ⅡⅠ・数学B 第4問は次ページに続く。)

回答募集中 回答数: 0
数学 高校生

数学Bの問題です。 至急です。明日の朝までにお願いしたいです。 フォローベストアンサーします。 よろしくお願いします。

2 <知・技≫ある工場では, お菓子1袋の重さが平均100g,標準偏差 6g の正規分布に従うように製造してい る。この工場で製造されたお菓子を25袋購入して調べたところ, 平均は103gだった。 この結果から 「お菓 子の重さの平均は100g でない」 と判断できるかを有意水準 5% で仮説検定したとき, 製造されるお菓子の 母平均をmとして、次の問に答えなさい。 (1) 次の空欄を埋めなさい。 帰無仮説は「m= ① 」, 対立仮説は 「m≠ ① 」 であり, 帰無仮説が正しいとすると, 標本平均 X の分布は正規分布 N (2) とみなせる。 (2) 標本平均が103 であるとき, (1) の X を標準化した確率変数Zの値の絶対値 | 2| を求めなさい。 ※小数で答えなさい。 (2)において,確率 P (|≧|z|) を求めなさい。 ※小数点以下の数の並びを5桁で答えなさい。 P(|≧||)=0. ア. 1~2000 イ. 2001~4000 ウ. 4001~6000 エ 6001~8000 オ.8001~10000 力. 10001~12000 キ, 12001~14000 (4) 仮説検定の結論について,空欄に入る語句を選び, 記号で答えなさい。 (3) の確率は,有意水準 5% よりも①ア.大きい, イ. 小さいから, 帰無仮説は棄却され ② ア.る。 イ.ない。 したがって, 「お菓子の重さの平均は100g でない」 と 3③ ア.いえる。 イ.いえない。 思・判・表〉 14000 人の生徒に対して, 数学と英語の試験を実施した。 数学の点数を X, 英語の点数をYと し、試験の点数は正規分布に従うと考え、 次の問に答えなさい。 (1) 数学の平均点が 66.2 点, 標準偏差が15.0点であった。 数学の点数が80点以上となる確率P(X≧80) を求めなさい 空欄に入る小数点以下の数の並びを5桁で答えなさい。 P(X≧80) = 0. (2) ① 数学の点数が80点であった生徒の順位はどの範囲にあるか, ② 数学の点数が59点であった生徒の順位はど の範囲にあるか、次の選択肢から1つずつ選び, 記号で答えなさい。 【選択肢】 (3) 英語の標準偏差は16.0 点であったが, 平均点が発表されなかったため、無作為に196人選び, 平均点m を推定し た。 196人の平均点が63.5点であったとき, 196人の点数を十分に大きな標本と考えてm に対する信頼度95% の信頼区間を求めなさい。 小数第二位を四捨五入して答えなさい。 信頼区間: ① ≦m≦ ②

回答募集中 回答数: 0
数学 高校生

至急です。明日の朝までにお願いしたいです 四角4.5の解説をして欲しいです 数学Bの確率です。

めなさい。 & P₂0x²+1 +²²6-63 5:4 めなさい。 √(x) = 2/(x₂-m) ² Pl 0-3)*x ² + (1-3) × 1 + (²-3) * 一般計+5x+2x1/ 動く点Pを考える。 始め, 点Pの座標は2である。 1個のさいころを 唇だけ正の方向に進むとする。 さいころの出る目を X, 移動後の点Pの 次の問に答えなさい。 計3+4+5+=計計 (2) 確率変数 Y の平均 EY) を求めなさい。 い。 + ① 17 E(Y) = oF(X)+b VY) を求めなさい。 v(Y) = d'v(x) =3.72 1=₁ (4) Xの標準偏差 (X) を求めなさい。 ①3 == ②5 15 v σ(X)= EY) = = 3.2-2 =-2=1 (4) 確率変数 Y の標準偏差 α (Y) を求めなさい。 N o (Y) = - ① 126 6(Y) = N(Y) のカードが4枚ずつあり、各色のカードには1~4までの数が1つずつ 黄のカードからそれぞれ1枚ずつ引き, 赤のカードの数をX, 青と黄 絶対値をYとするとき, 次の問に答えなさい。 EY) と分散 VY) を求めなさい 。 (3 2 I 4 [b] 15 2 4 2 T6 TV X|(4) 42 12 (2) ある製品を製造する過程で、 不良品が出る確率は 0.05 であることが分かっている。この製品を 406 15 1000 個製造するとき, その中に不良品が含まれる個数 X の平均 EX) と標準偏差 (X) を求めな さい。 21 363 <知・技≫ 次の問に答えなさい。 TL- 1個のさいころを90回投げて2以下の目が出る回数をXとする。 このとき, 確率変数Xの平 均 EX) と標準偏差 (X) を求めなさい。 EX) = ①,0(X)= ② ③ 3√√14 EX) = ①,0(X)= 5 <思・判・表原点 0 から出発して数直線上を移動する点Pを考える。 1個のさいころを投げ て5以上の目が出たら正の向きにだけ移動し, それ以外の目が出たら負の向きに2だけ移動 する。 さいころを12回投げた後の点Pの座標をXとし, 5 以上の目が出た回数をY とする とき、次の問に答えなさい。 (1) 確率変数Y の平均 EY) と分散 V(Y) を求めなさい。 2 EY) = ①, V(Y) = (2) XをYで表しなさい。 y-② ② (3) 確率変数 X の平均 EX) と分散 V(X) を求めなさい。 (2 EX= ①,VX)= ③ 2

回答募集中 回答数: 0