学年

質問の種類

生物 大学生・専門学校生・社会人

丸がついてる部分宿題で教科みてもよく分からい状態です…。教えてください

[リード C 次の図の (ア)~(エ)は, 免疫にかかわる細胞を模式的に示したもので 109. 免疫にかかわる細胞 ある。また、 以下の文章は、 をそれぞれ答えよ。 ただし、図に示した細胞の相対的な大きさは無視してよい。 (ア)~(エ)の細胞の名称 細胞(ア)~(エ)の特徴について述べたものである。 (ア)にはT細胞やB細胞などといった適応免疫にかかわる細胞や, NK細胞のように自然免疫 にかかわる細胞などがある。 (イ), (ウ), (エ)は食作用を行う食細胞である。 (ウ)や(エ)は異物を認識する とその異物を取りこんで分解し、 一部を細胞の表面に提示する抗原提示を行う。 キラーT細胞 に攻撃されて死んだ感染細胞や, 抗体が結合して無毒化された異物は、(ウ)の食作用によって処理 される。 (ア (1) (ウ) (ア) [ (ウ)[ 〕 (イ)[ 〕 (エ)[ マクロファージ 110.免疫記憶 次の文章を読み, 以下の問いに答えよ。 適応免疫で増殖したリンパ球の一部は ( ① )として保存され, 同じ抗原が再び体内に侵入す ると,速やかに増殖する。このようなしくみを( ② )という。 初めて抗原が侵入したときの免 疫反応を(③), 同じ抗原が再び侵入したときに ( ① )が引き起こす免疫反応を ( 4 ) と いい,(③)に比べて短い時間で発動する。 [リード C て認識され、攻撃されたことが原因である。 マウスBの皮膚を攻撃した細胞の名称を答えよ。 [ ] (2) 2回目の移植はどのような結果になると考えられるか。 (ア)~(エ)から最も適切なものを選べ。 (ア) 移植したマウスBの皮膚は脱落しない。 (イ) 移植から10日で, マウスBの皮膚が脱落する。 (ウ) 移植から10日よりも早く, マウスBの皮膚が脱落する。 (エ) 移植から10日よりも遅く, マウスBの皮膚が脱落する。 112.免疫と病気 次の文章を読み, 以下の問いに答えよ。 ] 免疫はわたしたちの健康と大きくかかわっている。 免疫が過剰にはたらいて, からだに不都合 な症状が現れることを( ① )という。 花粉症なども ( ① )の一種であることが知られている。 ( ① )の原因となる物質を(②)という。また, 免疫は自己の正常な細胞を攻撃してしまう ことがある。 この疾患を(③)という。 (1) 文章中の空欄に当てはまる語句を答えよ。 D[ ]②[ (2) ③の例として正しいものを(ア)~(エ)からすべて選べ (ア) Ⅰ型糖尿病 (イ) 鎌状赤血球貧血症 (ウ) 関節リウマチ (エ) インフルエンザ ]③ ] ] (3) 免疫のはたらきが低下する病気として, エイズがある。 エイズについて説明した (ア)~(エ)につ いて正しい場合は○を, 誤っている場合は×を答えよ。 (1) 文章中の空欄に当てはまる語句を答えよ。 DI ③[ (2) 右図は, マウスに1回目として物質Aを注射した後, マウスが生産する抗体量の変化を示したものである。 次の①、②の場合, 抗体産生量はどのようになるか。 それぞれグラフ中の(ア)~(ウ)から選べ。 100 産10 ① 2回目として物質 Aを注射した場合, 物質Aに対し て産生される抗体量。 [1] ② 2回目として物質Bを注射した場合, 物質 B に対 して産生される抗体量。 [ア] 1回目の注射 (物質A) 抗体産生量(相対値) 111.適応免疫と皮膚移植 次の文章を読み, 以 下の問いに答えよ。 右図のように, あるマウスAに, 形質の異なる マウスBの皮膚を移植すると, 移植した皮膚は10 日後に脱落した。 その1か月後, 同じマウスAに, 再びマウス B の皮膚を移植した。 マウス A, (1)1回目の移植で皮膚が脱落したのは, 移植した マウスBの皮膚が, マウスAの体内で異物とし ]②[ ] ④[ 2回目の注射 (物質Aまたは物質B ] (ア) エイズの原因となる HIV は, ヘルパーT細胞に感染する。 (イ) エイズの原因となる HIV は, 細菌の一種である。 (ウ) エイズにかかると, 免疫の過剰反応が起きる。 (エ) エイズにかかった状態では, 日和見感染が起こりやすい。 ・ア [ [ ] 113. 免疫と医療 免疫のはたらきは,医療にも応用されている。 これに関連した次の文章を 読み, 以下の問いに答えよ。 免疫のはたらきを医療に応用した例として, 予防接種と血清療法が知られている。 予防接種は, 抗体をつくる能力を人工的に高めるものである。 一方, 血清療法は, 毒に対する抗体を含む血清 を注射する治療方法である。 (1) 予防接種と血清療法に関する次の記述(ア)~(オ)のうち、正しいものをすべて選べ。 (ア) 血清療法では, 毒素に対する抗体を,あらかじめウマなどの動物につくらせて使用する。 (イ) 予防接種では, 毒素に対する抗体を注射する。 (ウ) インフルエンザの予防接種は、はしかの予防にも効果がある。 (エ) 血清療法と予防接種は, どちらも適応免疫を応用したものである。 (オ)予防接種は,破傷風やヘビ毒の治療に用いられる。 →? (2) 予防接種の際に接種するものを何というか。 0 10 20 30 40 50 60 日数 ▷p.61 例題 マウスB 皮膚 皮膚 10日間 脱落 1回目の移植 1か月間 2回目の移植

回答募集中 回答数: 0
数学 高校生

全くわかりません どなたか教えていただきたいです!

338 第9章 整数の性質 応用問題 1 正の整数a,bに対して, a を bで割った商をα余りを とする.つ まり、 a=bq+r が成り立つとする.このとき,以下が成り立つことを示せ. (1) aとbの公約数をd とすると,dはbとrの公約数でもある. brの公約数をd' とすると, d' はaとbの公約数でもある. (2) (3) αともの最大公約数とbrの最大公約数は一致する. 精講 ユークリッドの互除法の 「核」 となる p336 の (*) を証明してみま しょう. 考え方としては, 「αと6の公約数」と「brの公約数」 が (集合として) 一致することを示そうというものです. それがいえれば当然, それぞれの最大公約数も等しいといえます. 解答 (1) αと6の公約数がdであるから, a=dA, b=dB (A, B は整数) とおける.このとき d bx 4 (es) bog= bog= (01)bog r=a-bg=dA-dBg=d(A-Bg) dx (整数) なので,rはdの倍数である. (bもdの倍数でもあるので,) dは6とrの公 約数である. (2)との公約数がd' であるから, WAON (ROSS) b=d'B',r=d'R (B', R は整数) とおける.このとき a=bg+r=d'B'g+d'R=d' (B'q+R) d'x (整数) なので, a は d' の倍数である. (bもd' の倍数でもあるので,) d' はαと の公約数である。 (3)(1)(2)より「α と6の公約数」は「bとの公約数」 と(集合として) 一 致する.したがって, それぞれの最大公約数も等しくなるので、題意は示せ た。 おません る 持 る

回答募集中 回答数: 0
数学 高校生

(2)(3)(4)がよくわからないので教えて欲しいです! あと(2)でn箇所で交わるのはなんでですか?例を書いて欲しいです!

基礎問 208 第7章 数 134 漸化式の応用 列 セレス 20 平面上にn本の直線があって,どの2本も平行でなく,どの3 本も1点で交わらないとき,これらの直線によって平面がαn 個 (3)(2)で考えたように,(n+1) 本目の直線はそれ以前に引いてある直 線とか所で交わり,その交点によって,(n+1) 本目の直線は,2つ の半直線と (n-1) 個の線分に分割されている (下図)。 209 ってい 2 12 (1) の部分に分けられるとする. ① ② ③ [ +1 いる (1) 1, 2, as を求めよ. (n+1) 本目の直線 (2)本の直線が引いてあり,あらたに(n+1)本目の直線を引 いたとき,もとのn本の直線と何か所で交わるか. 1本目 2本目3本目 (e) (3)(2)を利用して, an+1 を an で表せ. (4) α を求めよ. 精講 まず、設問の意味を正しくとらえないといけません.nが含まれて いるとわかりにくいので, nに具体的な数字を代入してイメージを つかむことが大切で,これが(1)です. この(n+1) 個の半直線と線分の1つによって、いままで1つであ った平面が2つに分割される. 30 (N) よって, (n+1)本目の直線によって, 平面の部分は (n+1) 個増える ことになる. ..an+1=an+n+1(n≧1) <階差数列 (123) 直線の数が増えれば分割される平面が増えることは想像がつきますが,問題 はいくつ増えるかで,これを考えるために(2)があります。 (3)が最大のテーマです。 「an+1 を an で表せ」 という要求のときに,41,42, α3 などから様子を探るのも1つの手ですが, それは137 以降 (数学的帰納法) に まかせることにします.ここでは,一般に考えるときにはどのように考えるか を学習します. an と αn+1 の違いは直線の本数が1本増えることです. (4) n≧2 のとき, an=a+(k+1)=2+2+3+…+n) n-1 (1+2+…+n) +1= 1 == 1/2 n ( n + 1) +1 = 1/1/1 (n² + (n²+n+2) これは, n=1のときも含む. 吟味を忘れずに 「 ポイント 漸化式を作るとき, n番目の状態を既知として, (n+1) 番目の状態を考え、 その変化を追う 解答 (a2) 第7章 (1) (a₁) (a3) ① ⑥ (2) ④ 27 ⑤ ③ 演習問題 134 (1) ④ ③ 右図のように円 01,02, … は互いに接し, かつ点Cで交わる半 直線に内接している. このとき, 次の問いに答えよ. 図より, a2=4 (1)円 01 の半径が5, CA1 の長さが12で 12 図より, α3=7 あるとき,円の半径 12 を求めよ. 図より, a1=2 (2) すべての直線は,どの2本も平行でなく,どの3本も1点で交わら ないので, (n+1) 本目の直線は,それ以前に引いてあるn本の直線の すべてと1回ずつ交わっている。 よって, nか所で交わる. (2)番目の円の半径を1とすると き との関係式を求めよ. (3)を求めよ。 01 O2 A2 A1

回答募集中 回答数: 0
数学 高校生

この解答の(1)(2)がなんでこうなるかわからないので教えて欲しいです!!

207 za 基礎問 206 133 格子点の個数 3つの不等式 x≧0, y≧0, 2x+y≦2n (nは自然数)で表さ れる領域をDとする. (1) Dに含まれ, 直線 x=k (k= 0, 1, ...,n) 上にある格子点 (x座標もy座標も整数の点) の個数をkで表せ。 (2) Dに含まれる格子点の総数をnで表せ . 精講 計算の応用例として, 格子点の個数を求める問題があります. こ れは様々なレベルの大学で入試問題として出題されています。 格子点の含まれている領域が具体的に表されていれば図をかいて数 え上げることもできますが,このように,nが入ってくると数える手段を知ら ないと解答できません.その手段とは,ポイントに書いてある考え方です。 ポイントによれば,直線 y=kでもできそうに書いてありますが、こちらを 使った解答は (別解) で確認してください. (1) 直線 x=k上にある格子点は (別解)直線y=2k (k=0, 1, ...,n) 上の 格子点は(0,2k), (1,2k), ..., n-k2k (n+1) 個. 注 2n y=2k また,直線 y=2k-1 (k=1, 2,...,n) 上の 格子点は n Oi-k 02k-1), (1,2k-1), ..., (n-k, 2k-1) (n+1) 個. よって, 格子点の総数は 2n (n+1)+(n-k+1) k=0 k=1 y-2k-1 2Σ(n-k+1)+(n+1) =n(n+1)+(n+1) =(n+1)(n+1) =(n+1)2 \n On-k+ y=2k と y=2k-1 に分ける理由は直線 y=k と 2x+y=2n の交点を求めると,(n-212 k) となり,n-1/2 がんの偶奇によって 整数になる場合と整数にならない場合があるからです。 解答 Y (k, 0), (k, 1), 2n x=k (k, 2n-2k) ポイントある領域内の格子点の総数を求めるとき の (2n-2k+1) 個. 2n-2k-- 注 y座標だけを見ていくと, 個数がわかります. (2)(1)の結果に,k= 0, 1, ..., n を代入して, すべ て加えたものが,Dに含まれる格子点の総数. 0 I. 直線 x=k (または, y=k) 上の格子点の個数を k で表す Ⅱ.Iの結果について Σ計算をする y=-21th .. (2n-2k+1) =24721 k=0 ◆ 等差数列 2 {(2n+1)+1} 等差数列の和の公式 演習問題 133 =(n+1)2 第7章 注 計算をする式がkの1次式のとき,その式は等差数列の和を表 しているので、12/27 (atan) (112) を使って計算していますが,もち ろん, 2n+1)-2々として計算してもかまいません。 k=0 k=0 放物線y=x2 ・・・ ① と直線 y=n² (nは自然数) ...... ② がある. ①と② で囲まれた部分 (境界も含む)をMとする.このと 次の問いに答えよ. (1) 直線=k (k=1, 2,...,n) 上のM内の格子点の個数をn, んで表せ 写真 (2) M内の格子点の総数をnで表せ.

回答募集中 回答数: 0