学年

質問の種類

数学 高校生

(2)の問題が分かりません。教えて下さい。

10 極値をもつ条件 関数A(x)=xについて,次の問いに答えよ. (1) A(x)の増減を調べ, 極値を求めよ. (2) 関数B() がB' (x) =A (z) を満たすとする. a を実数とし,x>0において, 関数 f(x)=B(z) -axが極値をもつとき,aのとりうる値の範囲を求めよ. 問題文のf(x)が極値をもつとき 100k (大阪工大・推薦/改題) f'(x) =0であることのみに注目してはいけない. f'(x) = 0 の解の前後でf'(x) が符号変化しなければ極値をもたない. 極値をもたない条件は,f'(x) が符号変化をおこさない (つねに0以上,またはつねに0以下)こと である. 文字定数を分離してとらえる場合 f'(x) の符号がg(x) -αの符号と同じになるとき,f'(x) の 符号は,曲線y=g(x) と直線y=αの上下関係で判断することができる.y=g(x) がy=aの上側にあ れば常にf'(x)>0, 下側にあれば常にf'(x) <0である。 このように,文字定数 αが分離できれば,定 曲線y=g(x) と, x軸に平行な直線y=αとの上下関係を調べればよいので,とらえやすい。 解答 > (1) A'(x)=2xe-x+xd(-e-x)=x(2-x) e-x A(x)の増減は, 右表のようになる. (x)) +(x)= (x)=Sit I 0 2 4 極大値は A (2)=- 極小値はA(0)=0 e² A'(x) - 0 + 0 = A(x) 7 > V H (2) f'(x)=B'(x)-a=A(z) -a x>0においてf(x) が極値をもつ条件は, である。 f'(x)がx>0で符号変化すること f'() (8-8)579- A(x)-a>o 0 + f(x)。 A(x)-9<0 =(x)7 Acx)>a A(x)<a 常にf'(x)>0⇔ y=A(x) がy=αの上側 常にf'(x) <0⇔y=A(x) がy=aの下側 ① である. (1) の過程, およびx>0のときA(x)>0 とから,y=A(x) のグラフは右図の太線のようにな る。 よって, ①により, 求める範囲は 4 e2 0(x)\il (1) 0<a<- のとき 直線と曲線は 0<x<2で交わり, f'(x)は負か ら正へと変化するので,ここで極 小値をとる. limA(x) =0(左 0<a<4 30 x110 2 x 下の注) であるからx>2でも必 ず交わり ここで極大値をとる. x2 x-00 et 注 lim -=0・・・・・・であるから, limA(x) =0が成り立つ. X11 ※を証明しておこう x = 2s とおくと, x2 ex e2s (es)2=4()² S 1+8% 6の前文を参照. () () は,x>0のとき, S so es であるから, lim -= 0 を示せばよい.e=t とおくと, S log t >1+x+- + -を導いて示 となり, 2 6 es t すこともできる. log x 818 IC 6(2) から lim -=0であるから lim=0である. S S-8 es

回答募集中 回答数: 0
化学 高校生

まず緩衝液とは??って言う感じで 始めが残った酢酸のモル濃度から始まるのも意味わからなくて 分かりやすく解説して頂きたいですお願いします🙏

発展例題27 緩衝液 Cl=35.5 Ag=108 ■ 解答 0.10x 0.10x →問題 343 0.10mol/Lの酢酸水溶液10.0mLに0.10mol/Lの水酸化ナトリウム水溶液 5.0mLを 加えて、緩衝液をつくった。 この溶液のpHを小数第2位まで求めよ。 ただし、酢酸の 電離定数を K=2.7×10 - 5mol/L, log102.7=0.43 とする。 考え方 緩衝液中でも、酢酸の電離平衡 が成り立つ。 混合水溶液中の酢 酸分子と酢酸イオンの濃度を求 め、 電離平衡の量的関係を調べ ればよい。 このとき, 酢酸イオ ンのモル濃度は, 中和で生じた ものと酢酸の電離で生じたもの との合計になる。 これらの濃度 を次式へ代入して水素イオン濃 度を求め, pHを算出する。 (15.0/1000) L 10.0 1000 残った CH3COOH のモル濃度は, mol-0.10x- 5.0 1000 mol (15.0/1000) L = 0.0333mol/L また 生じた CH3COONa のモル濃度は, 5.0 mol 1000 =0.0333mol/L [H+] [CH3COO-] はじめ 0.0333 平衡時 0.0333-x 混合溶液中の [H+] を x[mol/L] とすると, CH3COOH H+ + CH3COO- 0 0.0333 [mol/L] 0.0333+x [mol/L] K₁ = ① [CH3COOH] [H+]= [CH3COOH] XK, 2 [CH3COO-] xの値は小さいので, 0.0333-x=0.0333,0.0333+x= 0.0333 とみなすと, ②式から [H+] =K" となるため、 pH=-logio [H+] =-log10 (2.7×10-5)=4.57 (S)

解決済み 回答数: 1
1/1000