学年

質問の種類

数学 高校生

この問題では立体Aの形が分からないと解けない問題で合ってますか?このような問題では立体の形は分からなくていいと思っていたので分からなくなってしまいました。回答よろしくお願いします。

388 (2) 切り口を考えたいが, 立体Bはイメージしにくいから 立体Aを「z軸のまわりに回転させる」→それを「平面 z=tで切る」 見方を変える 例題 21. xyz 空間において,D={(x, y, z1≦x≦2,1≦y ≦ 2, z = 0 } で表 された図形をx軸のまわりに1回転させてできる立体をAとする。 (1) 立体 A の体積VA を求めよ。 (2) 立体Aを軸のまわりに1回転させてできる立体Bの体積VB を求 めよ。 (名古屋大 改) ReAction 回転体の体積は、回転軸に垂直な切り口の円を考えよ 例題199 切り口の図形Eは図1の長方形 PQRS となる。 平面 z = t と軸の交点をH, 線分PSの中点をM とすると ゆえに PH = √PM2+MH=√8-1 S(t) = PH-π・12 =(√8-12)² -=(7-12) S 1 点Hから最も遠い点は P, 点Hから最も近い点 はNであるから S(t) = (半径PH の円) (半径NHの円) PM=√22-2 特講 (1) t1のとき 図1' 平面 z=t における図 図2′ 平面 x=2 における図 Q P 12 St P R S' +M z=tr イメージしにくい。 M HN x R -21- 0 立体A を「平面 z = t で切る」→それを「2軸のまわりに回転させる」 AP H 12y P.S. -1 イメージしやすい。 場合に分ける 21 HACS (2 (ア)断面が長方形1個 (イ) 断面が長方形 2個 切り口の図形Eは図1' の tの値によって, z=t 2つの合同な長方形 PQRS, 断面の形が異なる。 H• P'Q'R'S′ となる。 N H x 線分 PP′, QQ' の中点を M, Q' RR 0 0 z=to N とすると -2-1 図3′ 平面 x=1 における図点Hから最も遠い点は 0 12 y P. 点Hから最も近い点 はRであるから S(t) (半径PH の円) (半径RHの円) y 22120) 03-12-09 PHPM² + MH² PM=√22-12 √√8-12 02 4章14 体積・長さ,微分方程式 Action» 切る平面によって断面の形が変わるときは,図を分けて考えよ - RH = √ (1) 立体 A は,底面の半径が2で高 さ1の直円柱から, 底面の半径が 1で高さが1の直円柱をくり抜い た立体である。 y y D 2 2 1 1 02 よって, その体積は O 0 1 2 VA=2°z.1-12.1 = 3π √RN²+NH² √2-12 RN=√1-2 ゆえに (2) 立体Aを軸に垂直な平面 z=tで切ったときの, 切り口の図形をEとし,図形Eをz軸のまわりに1回 転させてできる図形の面積を S(t) とする。 立体Bはxy 平面に関し 対称である。 no (ア)1st ≦ 2 図1 平面 z=t における図 図2 平面 x=2における図 2 H・ P S IM P St z=t, 2 t 2 0 HN M x -2-1 0 1 12y S 2 S(t)=PH-RH 2 = (√8–1²)² -π(√2–1²)² = 6 (ア)(イ)より、求める立体Bの体積は VB =S(t)dt = 2*S(t)dt -26x dt + (7-- =2 =2 S 66 立体Bはxy 平面に関し て対称である。 64 3 212 空間内の平面 x = 0, x=1, y=0, y=1, z=0, z=1 によって囲まれた 立方体をP とおく。Pをx軸のまわりに1回転させてできる立体を Px, P 軸のまわりに1回転させてできる立体をP,とし,さらにPx と Pyの少 なくとも一方に属する点全体でできる立体をQとする。 Jano1 (1)Qと平面 z=t が交わっているとする。 このときPx を平面 z=t で切っ たときの切り口を Rx とし,Py を平面 z = t で切ったときの切り口を R, とする。Rx の面積,Ry の面積, R. と Ryの共通部分の面積をそれぞれ求 めよ。 さらに, Q を平面 z = tで切ったときの切り口の面積S(t) を求めよ。 (2)の体積を求めよ。 (富山大) 38 p.403 問題212

回答募集中 回答数: 0
数学 高校生

この問題で、xとtの関係式を作る時、写真のようにして作ったら解答と違くなってしまったのですが、なぜ写真のようにしては間違いになるのですか?回答よろしくお願いしますm(_ _)m

放物線C:y=x2 と直線l: y = x によって囲まれた図形を直線 のまわりに1回転させてできる回転体の体積Vを求めよ。 y=x « ReAction 回転体の体積は,回転軸に垂直な切り口の円を考えよ 例題199 直線 y=x を t軸として考える。 直線 y=x が回転軸 y A 基準を定める H P 断面積 Go 例題 206 て求める 領域 x 回転 であるか V 領域 x を直線 y 思考プロセス O x 1 x =xf" 2 PH2dt 0 V = π 放物線Cと直線lは2点 PHXT 011-0200 PH を tの式で表す ← 難しい PH, dt を x, dx で表すことを考える。 共有点のx座標は x2=xよりx-x = 0 x(x-1)=0 よって x = 0, 1 面の半径 の立体が その体積を 傘型の立 厚さ x の PQ 4x ≒ 0 の YA 0(0,0), A(1,1)で交わる。 放物線 C 上, 直線上にそれぞ れ点P(x, x2), Q(x,x) (0≦x≦1) をとり、点Pから直線に垂線 PHを下ろすと AL Q H P x-x2 PH = =PQ= √2 √2 ここで, OH = t とおくと XC x △PQH は HP =HQの 直角二等辺三角形である から PHPQ=1: t=0Q-QH=√2x- x-x2 x2 058 +0200 点と直線の距離の公式を 2 √2 x+x dt 1+2x t = より √2 dx √2 t 0 -> txの対応は右のようになるから V √2 v=xPH'd= PH' dt = =π = π x-x 2 272x 2 *SPH². 1+2x PH.1+2x 1+2x √2 -dx (x-x²)² (1+2x) dx √√(2x π (2x-3x+x2)dx 3 4 π 3 5 x5+ 練習 206 放物線 C:y = r2 √2 X dx x3 = 2 60 ← ←0 √2 1 用いてもよい。 02091 H P 断面積 PH2X1 直線 y=xをt軸として 考えて,Vを定積分で使 し,xで置換する。 回転軸がx軸となるよう 原点を中心とする 転移動を利用する方法も πC ある。 解答編 p.380 練習 306 [別解)参照。 AV すなわち (2) ゆえに D したがって 一般には, a≦x≦be 曲線 y= f れた図形(図 回転させ V=7 結果として, 線 x = a, x させてできる しかしながら いるのではな

回答募集中 回答数: 0
英語 高校生

英検の添削をしてほしいです

yright2025 Grade 2 4 ライティング(英文要約) ライティングテストは、 2つ問題 (45) があります。 忘れずに、 2つの問題に解答してください。 この問題は解答用紙 B面の 4 の解答欄に解答を記入してください。 以下の英文を読んで その内容を英語で要約し、解答欄に記入しなさい。 語数の目安は45語~55語です。 on T 解答は,解答用紙のB面にある英文要約解答欄に書きなさい。 なお, 解答欄の外 に書かれたものは採点されません。 「解答が英文の要約になっていないと判断された場合は, 0点と採点されることが あります。 英文をよく読んでから答えてください。 University students often plan for their future careers by attending job fairs or searching online for information about different kinds of work opportunities/ There are other ways./too. Some of them choose to join short-term work programs at companies called internships. / These have some good points. Students will be able to know more about companies they are interested in, such as what kind of jobs there are and what kind of people are working there. Also, internships allow students to get to know other students. These students can encourage each other both during and after the internship. On the other hand, if students choose to join very short internships, they may not be able to understand the job they are doing before the internships end. Also, students who take part in internships may find it difficult to do well in their studies. 2024年度第2回検定一次試験 (2級) .12 -> copyright2024 公益財団法人日本英語検定協会 無断転載・複製を禁じます

回答募集中 回答数: 0
化学 高校生

(1)と(2)の解説をお願いしたいです

問1 次の各問いに答えよ。 原子量は、H=1.0、C=120=16 とする。 図に示すように、ピストンにより容積 が変わるシリンダーA がコックのついた 管で容器 B とつながった装置があり、 装 置全体の温度を一定に制御できる恒温槽 に入っている。 シリンダーAには質量a[g]のメタン (気 体)が、容器 B には質量 5a[g]の酸素(気 体) が入っている。 ピストンが初期位置に Cata 16 容器 B シリンダー A コック |ピスト ピストン メタン 酸素 a [g] 5a [g] 管 P あるときコックは閉じており、シリンダーAと容器Bの容積はともに Vo[L]で等しく、温度もともに絶対 温度で To [K] である。このときのシリンダーA内の圧力を PA [Pa] とする。 気体はすべて理想気体とし、 管 の容積は無視できるとする。 (1) ピストンが初期位置にあるとき、 容器B内の圧力 [Pa] をシリンダーA内の圧力 PA を用いて表せ。 (2) ゆっくりとピストンを押し込み、 シリンダーAの容積を Vo/4 [L] とした後に、コックを開けてしば らく放置したところ、 メタンと酸素は反応せず互いに速やかに混合し、 その後装置内部の温度は To で 一様となった。このときの装置内のメタンの分圧 [Pa]を、 PAを用いて表せ。 (3) (2) の操作の後、 ピストンを固定して適切な方法で装置内のメタンを完全に燃焼させた。このときの 化学反応式を記せ。 (4) (3)の後、しばらく放置した後に装置内の温度が再び To となったとき、 容器内に液体の水が存在し た。 このときの装置内の全圧 [Pa] を PA を用いて表せ。 ただし、 温度 To での水の蒸気圧は、 0.10PA と する。 また、水蒸気の凝縮を除いて装置内の気体は水 (液体) へ溶解しないとし、温度変化によるシ リンダーAと容器 B の容積変化、および水 (液体)の体積は無視できるとする。

回答募集中 回答数: 0
現代文 高校生

尚文出版基本の現代文からですこの答え教えて欲しいです🙇‍♀️

ステップ 18 80 ステップ LISSTOH ステップ1 長文に取り組もう 鉄のしぶきがはねる 要約シート (技術は体の内側に) ミリ単位以下での正確さが求 められるでは、体がおぼえている感覚が頼 り。 技術はまさに〈身につける〉ものなのだ。 桃 (注) 工業高校でコンピューターを学ぶ心は、祖父が経営していた金属加工の工場が閉鎖して以来、手作業より もコンピューターを信頼するようになった。しかし、ひょんなことから「ものづくり研究部」の活動を手伝う ことになり、高校生たちがその技能を競う「ものづくりコンテスト」(ものコン)への出場を決意する。 1 ゴールデンウィークを間近に控えた四月の終わり、部活のミーティングで三つのことが伝えられた。 「毎年のことやけど、連休の間も練習はあります。」 「はい。」 だれもが真顔でうなずいた。 今は一本でも多 くの課題部品をつくりたい時期だ。反復練習、反復練習。練習を重ねて、体に課題の感覚をおぼえこませ ておきたい。 (1) 図「ついては五月の連休に特別講師に来てもらうことになった。」 「小松さん帰ってきたんですか?」 「い や」声をあげる心に、先生は小さく首を振って言った。 「本校の卒業生、さきはらゆきこさんだ。」 ③ 崎原、由希子? どこかできいたことがある。名前をきいただけなのに、心の頭の中でなぜか漢字に変 換された。もしかして。 顔を上げた心に、「そうだ。」というように先生はうなずき、「本校の卒業生。も のコン〉の全国三位入賞者よ。 大手機械メーカーに就職して、今は〈技能五輪>の強化選手としてがんばっ (注2) 目標6分 解答時間 目標15分 本文 1小松さん技術者。「ものづくり研 究部」に指導に来ていた。 2技能五輪若い職人たちが、それ ぞれの技術を競う大会。 3旋盤鉄を削って加工する技術。 根拠のある二つの事柄 4二律背反 の、つじつまが合わないこと。 5テーパー金属部品の一種。 6隅肉金属加工の技術。 7原ロー「ものづくり研究部」の部員。 要旨をつかむために! 空欄を埋めていこう ○ 文章展開図 【各2点】 100 1部活のミーティング 連休の間も練習 とる。」 20特別講師・・・ 崎原由希子さん (注4) 一度しか見ていないはずの笑顔が、くっきりと思い出された。 初めて見たとき、心はあの笑顔に抵抗を おぼえた。旋盤に対して複雑な思いがあったからだ。工場を造り、壊した。懐かしいけれど、つらい。好 きだけれど、嫌い。旋盤は心にどうしようもない二律背反をつきつけてくる。それにまっすぐに取り組む ことのできる崎原さんの笑顔を、ちゃんと見ることができなかった。 ごちゃごちゃと引っかかる思い出を (注3)せんばん 忘れたくて、コンピューターの世界を選んだつもりだった。 3 15 ⑤「ほら、この人よ。」先生は持っていたファイルの中から、見覚えのある新聞のコピーを取り出した。課 部品を手にした崎原由希子さん。 7-6 5~ ④心 初めて見たとき 笑顔に抵抗をおぼえた ・・・旋盤に複雑な思い 印象が違う はちきれんばかりに 笑顔の裏側 ごからものが、心には今ならわかる 毎日の地味な 毎日の地味な積み重ね ↓ 19 ステップ1 小説 「こんな人でしたっけ。」 その笑顔から受ける印象があまりに違うことに、心は少しうろたえた。あのと いと はにかむような控えめな微笑み。 けれど、はちき した笑顔は、そこにはなかった。 積み重ね。真夏はだらだらと滴る汗をぬぐいながら、冬は凍えるほど冷たい指先にたえながらの練習。膨 大な時間をツイやして練習をしても、体に残るものはほんのわずかだ。 やってられないほど効率が悪かっ た。けれどわずかながらも確かに身につくものがある。だから続けられる。 (注5) (注6) みにく ミジュクながら、テーパもネジもつくれるようになった。隅肉もなんとかやれる。 崎原さんの笑顔に隠 れているのも、たぶんそういう自信だと思う。もっと練習すれば、もう少しうまくなれるんじゃないか。 25 そういう期待。たぶん。 まだまだ全然追いつけないけれど、 崎原さんの体のなかにあるものを、自分も少 しはつかんでいると心は思う。だからこんなに崎原さんの笑顔がまぶしく見えるのだろう。 出たい。 「それから」 中原先生は声を引き締めた。「校内選考は、例年どおり六月初めだ。中間テスト明けでも あるけど、あわせてがんばってくれ。」 すっと冷ややかな空気が流れた。 校内選考。 選ばれるのはひとり。か、ふたり。 下腹にぐっと力が入っ 30 (注7) 能性が残っている。 た。自分でも意外なほどの思いが込み上げてきた。ひとりは原口に決まっているにしても、もうひと枠可 混じりけのない、ただまっすぐな思いだった。突然、途方もないような道が目の前に開けたみたいな気に なる。 地区大会、九州大会、全国大会。意味なんかいらない。 とにかく行けるところまで行ってみたい。見え 35 ているところには行ってみたい、それだけだ。ストレートな思いが、つき上げるように心の胸に湧いてきた。 ガイドの →間五を攻略 原さんの笑顔に対して、かつて心が抱いた印象に線、改めて見た際の印象に線を引こう 2 ... 確かに身につくもの ・期待 ○校内選考 心 なほどの思い 出たい 行けるところまで 行ってみたい 大きくとらえよう 要約への第一歩 【4点】 場面 心が崎原さんの写真を見る 心の心情 〈ものコン〉に 〇場面 という思いが込み上げる 理解を深めよう 要約のための確認 崎原さんの写真を見る →笑顔が輝いて見える ○状況 崎原さんの笑顔の裏側 心の心情 今ならわかる・・・自信・期待 まっすぐな思い出たい →行けるところまで 行ってみたい

回答募集中 回答数: 0
生物 高校生

生物の計算問題です。53番(2)、(3)、(4)、(5)が分かりません。教えてください🙇‍♀️

153. 遺伝子およびその連鎖と組換えに関する次の文章 I, II を読み,以下の問いに答えよ。 I ある動物 X について,いずれも遺伝子型が AaBb である雄と雌を交配させたところ、生ま れた子の表現型とその分離比は, [AB] [Ab]: [aB] [ab]=33:15:15:1となった。この ことから,交配に用いた動物Xの雄と雌の染色体では, A と b, a と B の組み合わせで連鎖し、 かつ組換えが起こっていると考えられた。 (1) この交配で用いた動物Xの雄と雌の体細胞における染色体と遺伝子A(a),B(b) の関係を 示した図として最も適当なものを, 下の(ア)~(オ)から1つ選べ。 [ウ] (イ) a (オ) 出 a at to A a Bt to b B a Btb (2)この交配で用いた動物 X(遺伝子型 AaBb) の個体がつくる配偶子の遺伝子の組み合わせの比 を答えよ。ただしAB: Ab:aB: ab の順に答えること。 [ ] (3) 動物Xにおける遺伝子 AとBの間の組換え価を求めよ。 [ Ⅱ ある動物Yにおいて,それぞれ遺伝子型がAaBb である雄と雌を交配させたところ,組換 え価は 12.5%であった。 なお、この交配に用いた個体は, 染色体上で遺伝子AとB. aとが 連鎖していることがわかっている。 (4) この交配で用いた動物 Y (遺伝子型 AaBb) の個体がつくる配偶子の遺伝子の組み合わせの比 を答えよ。 ただしAB: Ab: aB : ab の順に答えること。 [ ] (5)IIで行った動物Yの交配において,生まれる子の表現型の比を [AB]:[Ab]:[aB]:[ab] [ の順に答えよ。 ] [23 神戸女学院大 改]

回答募集中 回答数: 0
1/1000