学年

質問の種類

数学 高校生

数B 数列の問題です。練習27を教科書の例題を見ながら途中まで解いてみましたが、ここまで合っているかどうかも、この先の解き方も分かりません。

ここでは、1からnまでの自然数の2乗の和 第2節 いろいろな数列 | 27 Σ k² = 1²+2²+3²+...+n² を求めてみよう。 恒等式(k-1)=3k-3k+1 を利用して考える。 に1からnまでを順に代入すると 5 左辺だけ加えると k=1 13-03-3-12-3-1+1 N-03 k=2 23-13-3-22-3.2+1 k=3 3-2°=3.32-3・3+1 + n-(n-1)3 n3-03 k=nn³-(n-1)³=3.n²-3⋅n+1 これらn個の等式の辺々を加えると n=3(1+2+3+......+n") - 3(1+2+3+... +n) +1×n 第1章 数列 練27 (43451 k4-(k-1)" 2 468-660-46-1 を用いて 次の等を証明せよ。 ん {In (n+1)}" k=1 K=2 K=3 100 k=w 13×23×33× 1"-04 4.13 -6.12 +4.1 - 1 2" - 17 = 4.23-6-22-412-1 34-24 = 4.33-63244×3-1 h" - (n-1) = 4 n³ - 6 ∙n² +4. n -1 10 これろん個の等式の辺々を加えると 14- 4 (13 + 2 ³ - 33 + +-6(1+2+32+TH + 4(1727311 th) n すなれる n4 E 4263 kol 2 6号に+4に 1 kol " 15 h4 = 4 2 ₤ 3 - 6 2 1²-4.2 4.(n+1)-1 (CH すなわち n³=3k²-3k+n k=1 k=1 1 n³-3 k²-3n(n+1)+n k = n(n+1) k=1 よって 6k=2n+3n(n+1)-2n k=1 6k=n(n+1)(2n+1) k=1 したがって Σ k² = 1² +2²+3² + ......+n²= n(n+1)(2n+1) k=1 練習等式 -(k-1)^=4k-6k²+4k-1 を用いて, 次の等式を証明 27 せよ。 {1/(n+1)} =1+2+3+…+= {/12n (n+1) *kにどのような値を代入しても成り立つ等式を,kについての恒等式という。 20

未解決 回答数: 1
化学 高校生

(6)の問題がわかりません。答えの求め方を教えてもらえると嬉しいです。

18 第1編物質の構成と化学結合 基本例題 4 原子とイオンの構造 18 解説動画 (1) 塩素原子 C1 について, 35, 17 はそれぞれ何を表しているか。 (2)塩素原子 CIについて、陽子, 中性子, 電子の数を答えよ。 ノード (3)(1)と(2)の塩素原子の関係を何というか。また,陽子,中性子,電子のうち,(1)と (2)の塩素原子において数が異なるものはどれか。 (4) (1)の原子の電子配置を、例のように記せ。例 窒素原子 K(2)L(5) (5) (2)の原子はどのようなイオンになるか。 化学式で記せ。 (6) カリウム原子Kがイオンになったとき, (5) のイオンと同じ数になっているの は,陽子,中性子, 電子のどれか。 すべてあげ, その数とともに答えよ。 指針 (1)~(3) 陽子の数で元素が決まる。 陽子の数を原 原子番号= 陽子の数=電子の数 子番号といい, 元素記号の左下に記す。 陽子と 質量数=陽子の数+中性子の数 中性子の数の和を質量数といい, 元素記号の左上に記す。 (4)~(6) 電子はふつう, 内側の電子殻から順に配置されていく。 収容できる電子の最 大数は,K殻2個, L殻8個, M殻18個・・・である。 価電子の数が少ないとそれを 失って陽イオンに, 価電子の数が多いと電子を受け取って陰イオンになる。 解答 (1) 35: 質量数, 17: 原子番号 (2) 陽子: 17, 中性子: (37-17) 20, 電子: 17 (3)同位体,中性子 (4) K(2)L(8)M(7) (5) C1 (6) 中性子: 20, 電子:18 第1編

未解決 回答数: 1
1/1000