学年

質問の種類

数学 大学生・専門学校生・社会人

どうしてnを無限大にしたときに0になることを証明しているんですか?

f(x)=f(0) + f'(x+ 2! Rn(x) = 1! r(@s+... f(n)(0zzn (001) n! f" (0) x2 +... + 44 マクローリン展開 第2章 微 f(x) が0を含む開区間 I で無限回微分可能(すべ てのnに対してn回微分可能) であるとき, 任意のæ∈I と任意のnEN に対して 2.4 テイラーの定理 45 【解】 (1) を示す. 例18より Rm (z) = 0x n! -T” だから1章例題2より, f(n-1) (0) 0x -x-1 (n-1)! + Rn(x), |Rn(x)|= = n! || xn "ex - n! →0 (n→ ∞) f(x)は をみたす 日=日(π,n) が存在する. ここでもしRn(x)0 (n→∞)なら -> f'(0) f" (0) f(x)=f(0) + -x+ 22 +・・・ + f(n) (0) -xn 1! 2! n! +... と無限級数で表される. 右辺の無限級数を f(x) のマクローリン展開ある はマクローリン級数という(級数については6章を参照のこと)。 は証明を省略する (6章 6.4 節参照). 問21 例20の (2) (3) を示せ. 注eのマクローリン展開 (1) において,π=i0 (iは虚数単位; i = √-1) と おくと, sin π, cosæ のマクローリン展開 (2), (3) から eid=cos0+isin O が得られる.これをオイラー (Euler) の関係式という. となり結論を得る。 (2), (3) も同様に示される。 (4), (5) の証明には、 定理 12 において別の形の剰余項(コーシーの剰余など) をとる必要がある. ここで 例20 T xn (1) ez=1+ + + + n! (-x<x<∞) 問22|x|<1のとき次の級数展開が成り立つことを示せ。 ( 6章定理1参照) I 2.5 2n 1 (2) sin x = + 1 3! ・+ (−1)n-1. 5! +... (2n-1)! log 1+2=2(x+++...) 3 5 (-x<x<∞) x2n + .... + (−1)". [( 2n) ! ·+(-1)n−12 +・・・ (-∞<x<∞) x2 24 (3) cos x = 1- 2! 4! x2 (4)log(1+z)=x_ x3 + 2 3 n 1.3...(2n-3) 2.4... (2n) (−1<x≤1) (5)(一般の2項定理) | ネイピアの数とオイラー は任意の実数とする. +(-1)^- 「対数」という言葉はネイピアが導入した. オ イラーは級数 (1+m) = 1 + - a a(a-1)²+ 1 1 1 2! 1+ + +・・・+ 1! 2! ala-1)...(a− n + 1) (Iml<1) を考え、その和をeで表した.また,その数値を計算し,eを底とする対 問23|x|<1のとき次の級数展開が成り立つことを示せ. 1 (1) (1+m)2 = 1-2x+3x² -.... .+ (−1)"(n+1)x" +... (2) V1 +æ=1+zx- 1 1 2 x² 2.4 2 1.3 + 2.4.6 2.3

未解決 回答数: 1
数学 高校生

問題44の(3)や、問題45の(2)のような式変形を、こんな天才的な発想出来ないでしょ!と思うのは僕だけでしょうか。解説を見れば何をしているのかはわかるのですが、問題によってやり方も様々で、慣れとかでどうにかなるものなのかと思ってしまいます。 何かコツや、式変形の対応デッキ... 続きを読む

基礎問 76 MAN AV 44 はさみうちの原理(I) 次の問いに答えよ. (1) すべての自然数nに対して, 2">n を示せ. (2) 数列の和 Sm= (1)をnで表せ。 (n=k(k≧1) のとき,2">k と仮定する. 両辺に2をかけて, 22k ここで, 2k-(k+1)=k-1≧0 (≧1 より) ..2'+'>2k≧k+1 すなわち, 2+1>k+1 よって, n=k+1 のとき, ① は成りたつ. (i), (ii)より, すべての自然数nについて, 2">n は成りたつ. (3) lim Sm を求めよ. (1) 考え方は2つあります。 ... 1 2 n (2) Sm = + 4° 4' +・・・+ ...... ② 4"-1 1/Sn= 1 n-1 n +・・・+ + ......3 4₁ 4"-1 4" ② ③ より 3 (IIB ベク4 ) Sn= + 1 1 n -(+) +...+ n 4' 4"-1 -Sn= 4 1 4" I. (整数)” を整式につなげたいとき, 2項定理を考えます。 II. 自然数に関する命題の証明は数学的帰納法. (IIB ベク137 (2) 本間のΣの型は, 計算では重要なタイプです. (IIB ベク121 S=Σ(kの1次式)rk+c (r≠1) は S-S を計算します。 (3) 極限が直接求めにくいとき, 「はさみうちの原理」 という考え方を用います。 bn≦a≦cm のとき .. Sn= n (3)(1)より2">n だから, (2")'>n . 4">n²=0<< 20< n 4 4-1 n lim40 だから、はさみうちの原理より lim 11-∞ n n - 4-1 -=0 limb= limcn=α ならば liman = α →00 11-00 この考え方を使う問題は,ほとんどの場合, 設問の文章にある特徴がありま す. (ポイント) さらに, lim lim (14) "=0 より lim.S,=- 16 11-00 9 「ポイント 解答 (1) (解Ⅰ) (2項定理を使って示す方法) (x+1)"=2,Chr" に x=1 を代入すると k=0 2"=nCo+mCi+nCz+... +nCn n≧1 だから 2"≧Co+nCi=1+n>n .. 2">n (解II) (数学的帰納法を使って示す方法) 2">n ...... ① (i) n=1のとき (左辺) =2, (右辺) =1 だから, ①は成りたつ 演習問題 44 極限を求める問題の前に不等式の証明があれば, はさみうちの原理を想定する 次の問いに答えよ. (1) すべての自然数nについて, 不等式 3"> n" が成りたつこと 数学的帰納法を用いて証明せよ。 "k =215730 (n=1,2, …) とおく。このとき, (2) Sm= 2 k=1 1 n 3 3+1 (3) lim Sm を求めよ. 11-00 が成りたつことを示せ. CS CamScanner 第4章

解決済み 回答数: 1
数学 高校生

(3)が文字が多すぎてわからないです💦 3つの文字がある時になぜ解答のようになるのか教えて欲しいです!!

第1章 い J 10 第1章 式と証明 基礎問 是 • 42項定理 多項定理 (1)次の式の展開式における[]内の項の係数を求めよ. (ii) (2x+3y) (x³y²] (i) (x-2) (x³) (2) 等式 nCo+mCi+nCz+..+nCn=2" を証明せよ。 (3)(x+y+2z)を展開したときのry'zの係数を求めよ。 精講 2項定理は様々な場面で登場してきます. ここでは I.2項定理の使い方の代表例である係数決定 Ⅱ.2項定理から導かれる重要な関係式 以上2つについて学びます。 2項定理とは, 等式 (a+b)=n Coa"+na" 16+... +nCkan-kbk+... +nCnbn のことで, Cha"-kb (k=0, 1, , n). を (a+b)” を展開したときの一般項といいます。 参考 次に (x+y) を展開したときの一般項は Cirkyk-i したがって(x+y+2z) を展開したときの一般項は 6Ck kCixiy-(22)6-k =26-• Ch* Ci x¹y-iz-k よって, ray'zの係数は k=5, i=3 のときで 216C55C3=26C1・5C2 ポイント =2・6・10=120 11 定数の部分と文字式 の部分に分ける (a+b)" =nCoa+nCian1+..+nCkan-kbk+…+nCnbn 20% (3)は次の定理を使ってもできます. 多項定理 (a+b+c)” を展開したときの abc" の係数は >>n! (x) p!q!r! (p,g,rは0以上の整数で, p+g+r=n) (x+y+2z) を展開したときの一般項は 6! p!q!r!xy(22)=- 276! p!q!r! xyz" p=3, g=2,r=1のときだから求める係数は (p+g+r=6) 答 (別解) (1)(i)(x-2)を展開したときの一般項は Cr(x)^(-2)=Cr(-2)7-'.' r=3のときが求める係数だから < Crx7" (-2)" でも その数 文字 7X6X5 7C3(-2)=- .24=560 3×2 よい 2・6! -=120 3!2!1! (i) (2+3y) を展開したときの一般項は 5C(2.x)(3y)=5Cr・2'35-xTy5-r r=3のときが求める係数だから 5×4×3 5C3・23・32= ・・2・32=720 3×2 sCr(2x)-(3y)" T 文字 もよい (2)(a+b)"=Coa+nCia-16++nCn-ab-1„ C„b" の両辺に a=b=1 を代入すると (1+1)=„Co+„C+..+nCn ..nCo+nC+..+nCn=2" (3)(x+y+2z)を展開したときの一般項は。Ch(x+y)^(2z)6-k 注 1. 多項定理を使うと, 問題によっては,不定方程式 p+q+r=n を解く 技術が必要になります. 注2. (1)(ii)のようにx,yに係数がついていると, パスカルの三角形は使いに くくなります。 演習問題 4 (1) (32y) における ry の係数を求めよ. (2) Co-C1+C2-nCs+..+(-1)"C=0 を証明せよ -

解決済み 回答数: 1
1/7