学年

質問の種類

地学 高校生

地学基礎の問題です! 問2の問題で単位をmmやkmは どのように考えられているのかを教えてほしいです!! よろしくお願いします🙇🏻‍♀️

重要演習 重要例題 1 地球の大きさ 5分 紀元前3世紀,エラトステネスは,ナイル河口のアレキサン 北極 ドリアで夏至の日の太陽の南中高度を測定して、太陽が天頂よ り 7.2° 南に傾いて南中することを知った(図)。 また, アレキサ ンドリアから5000 スタジア*南にあるシエネ (現在のアスワン) では、夏至の日に太陽が真上を通り, 正午には深い井戸の底ま で日がさすことが当時広く知られていた。 これらの事実から, 彼は地球一周の長さを 7.2% アレキサンドリア 太陽光線 シエネ 赤道 7.2° ] スタジアであると計算した。 *スタジアはエラトステネスの時代の距離の単位 問1 上の文章中の空欄に入れる数値として最も適当なものを,次の①~④のうちから一つ選べ。 ① 22000 ②25000 ③ 40000 ④ 250000 問2 一周4m(直径約1.3m)の地球儀を考える。この縮尺では世界で最も高いエベレスト山(チョ モランマ山)の高さ (8848m)はどれくらいになるか。 最も適当なものを,次の①~④のうちから 一つ選べ。 ただし, 地球一周は約40000kmである。 ① 0.9mm ② 9mm ③ 90mm [2000 本改] ④ 900mm が成りたつ。 問2 地球儀の山の高さをx[mm], 地球儀の円周を [mm], 山の高さをん [km], 地球の円周をL [km] とす h ると x:l=h: L となるから x = 1× L 考え方 問1 地球を完全な球と考えると, 同一経線 上の2地点間の緯度差が 0 [℃], 距離がdのとき,地球 の円周をLとすると d:L=0:360° これを変形してL=d× 360° 緯度差は,太陽の南中高度の差 7.2° に等しいから 360° L = 5000 x = 7.2° 250000 スタジア l=4m=4000mm,h=8848m≒9km, L=40000km より x = 4000x = 0.9mm 40000 解答 問1④ 問2 ①

解決済み 回答数: 1
数学 高校生

この問題では立体Aの形が分からないと解けない問題で合ってますか?このような問題では立体の形は分からなくていいと思っていたので分からなくなってしまいました。回答よろしくお願いします。

388 (2) 切り口を考えたいが, 立体Bはイメージしにくいから 立体Aを「z軸のまわりに回転させる」→それを「平面 z=tで切る」 見方を変える 例題 21. xyz 空間において,D={(x, y, z1≦x≦2,1≦y ≦ 2, z = 0 } で表 された図形をx軸のまわりに1回転させてできる立体をAとする。 (1) 立体 A の体積VA を求めよ。 (2) 立体Aを軸のまわりに1回転させてできる立体Bの体積VB を求 めよ。 (名古屋大 改) ReAction 回転体の体積は、回転軸に垂直な切り口の円を考えよ 例題199 切り口の図形Eは図1の長方形 PQRS となる。 平面 z = t と軸の交点をH, 線分PSの中点をM とすると ゆえに PH = √PM2+MH=√8-1 S(t) = PH-π・12 =(√8-12)² -=(7-12) S 1 点Hから最も遠い点は P, 点Hから最も近い点 はNであるから S(t) = (半径PH の円) (半径NHの円) PM=√22-2 特講 (1) t1のとき 図1' 平面 z=t における図 図2′ 平面 x=2 における図 Q P 12 St P R S' +M z=tr イメージしにくい。 M HN x R -21- 0 立体A を「平面 z = t で切る」→それを「2軸のまわりに回転させる」 AP H 12y P.S. -1 イメージしやすい。 場合に分ける 21 HACS (2 (ア)断面が長方形1個 (イ) 断面が長方形 2個 切り口の図形Eは図1' の tの値によって, z=t 2つの合同な長方形 PQRS, 断面の形が異なる。 H• P'Q'R'S′ となる。 N H x 線分 PP′, QQ' の中点を M, Q' RR 0 0 z=to N とすると -2-1 図3′ 平面 x=1 における図点Hから最も遠い点は 0 12 y P. 点Hから最も近い点 はRであるから S(t) (半径PH の円) (半径RHの円) y 22120) 03-12-09 PHPM² + MH² PM=√22-12 √√8-12 02 4章14 体積・長さ,微分方程式 Action» 切る平面によって断面の形が変わるときは,図を分けて考えよ - RH = √ (1) 立体 A は,底面の半径が2で高 さ1の直円柱から, 底面の半径が 1で高さが1の直円柱をくり抜い た立体である。 y y D 2 2 1 1 02 よって, その体積は O 0 1 2 VA=2°z.1-12.1 = 3π √RN²+NH² √2-12 RN=√1-2 ゆえに (2) 立体Aを軸に垂直な平面 z=tで切ったときの, 切り口の図形をEとし,図形Eをz軸のまわりに1回 転させてできる図形の面積を S(t) とする。 立体Bはxy 平面に関し 対称である。 no (ア)1st ≦ 2 図1 平面 z=t における図 図2 平面 x=2における図 2 H・ P S IM P St z=t, 2 t 2 0 HN M x -2-1 0 1 12y S 2 S(t)=PH-RH 2 = (√8–1²)² -π(√2–1²)² = 6 (ア)(イ)より、求める立体Bの体積は VB =S(t)dt = 2*S(t)dt -26x dt + (7-- =2 =2 S 66 立体Bはxy 平面に関し て対称である。 64 3 212 空間内の平面 x = 0, x=1, y=0, y=1, z=0, z=1 によって囲まれた 立方体をP とおく。Pをx軸のまわりに1回転させてできる立体を Px, P 軸のまわりに1回転させてできる立体をP,とし,さらにPx と Pyの少 なくとも一方に属する点全体でできる立体をQとする。 Jano1 (1)Qと平面 z=t が交わっているとする。 このときPx を平面 z=t で切っ たときの切り口を Rx とし,Py を平面 z = t で切ったときの切り口を R, とする。Rx の面積,Ry の面積, R. と Ryの共通部分の面積をそれぞれ求 めよ。 さらに, Q を平面 z = tで切ったときの切り口の面積S(t) を求めよ。 (2)の体積を求めよ。 (富山大) 38 p.403 問題212

解決済み 回答数: 1
1/1000