学年

質問の種類

数学 高校生

(2)がよく分かりません💦 どうして2と5が出てくるんですか?

Think 例題 276 循環小数法(2) ) 4 整数の性質の活用 581 6桁の循環節をもつ循環小数 A=0abcdef を3倍すると, 6桁 * * * * 循環節をもつ循環小数 0.bcdefa になるような最小のAを求めよ. n 101 (2) 3 6 1より大きくより小さい分数が有限小数になるような正の 整数nをすべて求め 考え方 (1) 循環小数Aを10倍すると, a,bcdefa となる。 14=0.abcdef abcdef abcdef...... 10A a.bcdefa bcdefa bcdefa...... m n こうな数のときかを考える. (p.580 解説参照) (2) 分数が有限小数になるのは,既約分数に直したときの分母の素因数がどのよ (1)条件より また, 3A=0.bcdefa 10A a.bcdefabcdef.... (1)これより, 10A-3A を計算して これら10A=a.bcdefabcdef・・ T =) 3A=0.bcdefabcdef 7A=a したがっ したがって, Am① 循環節が消えるように Aを10倍する。 10A と3A の小数点以 下が同じになる. 合 ここで,0<A<1,0<3A<1 より <A</1/3Aの値の範囲 ① より 01/13 したがって, <a< ①より<</ aは整数 (0≦a≦)より,a=1,2s) よってこのうち、 最小の循環小数は α=1のときみ で、 A== 0.142857 7 63 (2)1/13より。 322 8<n<18 3n 4 3333333 33333333 分数を小数で表したとき, 有限小数になるのは,既 約分数に直したときの分母が2と5以外に素因数を もたない場合に限られる方から小さい方を引くと 8<<18 の範囲の正の整数nでこの条件に合う のは,分子が6,すなわち, 2×3であることから, 分 22×3-12, 3×5-15, 2-16 6 3 6 Focus 館 15 16 5 12 2 人 2 6 3 = 5' 16 15 8 第9章 ← 既約分数の分母の素因数が25のみ 既約分数が有限小数になる 276 このとき、もとの自然数のうち最小のものを求めよ。 m ある自然数の逆数を小数で表すと3桁の循環節をもつ循環小数0.abc となる.

回答募集中 回答数: 0
古文 高校生

このプリントの答えがわかる方いませんか?? 教えて欲しいです🙏

年( w - 8 助動詞のまとめ 次の()内の助動詞を、適当な形に活用させよ。 10日ごろは音にも聞き(つ)らむ。 日ごろにも(わが名を きっと聞いているだろう。 風光の人を感動せ (しむこと、まことなるかな。 女のまじかりけるを、 解析古典文法 四訂版 (火) 20 助動詞演習問題 女として)自分のものにできそうもなかった女を、 君はあの松原へふらせたまへ。 (家) 次の線の助動詞について、それぞれ基本形と文法的意味、文中 活用形を答えよ。 あなた様はあの松原 (中) へお入りください。 イ完了 を感動させることは、本当なのだなあ。 自然 (五) ア不可能 エ打消 過去 オ反実仮想 強意 ク ウ 尊敬 力使役 ケ 推定 ゆかしかり(き)と、神へ参るこそ本意なれと、 知りたかったけれども、神へ参することが本来の目的であると思って、 コ 現在推量 おとなしく知りぬ (べし)したる神官を呼びて、 年配で物を心得ていそうな顔をした神官を呼んで、 ⑤大井の民に仰せて水草を作らせ (らる) けり。 大井川沿いに住む土地の住人に命じて水車を作らせなさった。 次の傍線部の助動詞の文法的意味と活用形を答えよ。 やがて面影は推し量らるる心地するを、 (七) すぐにその人のかたちが自然と思い浮かぶ感じがするが、 「聞きしにも過ぎて、尊くこそおはしけれ」 (五二) 次の傍線部の助動詞の文法的意味として、最も適当なものを後から 選んで答えよ。 「噂に聞いたのにもまさって、尊くていらっしゃったことだ」 道知れる人もなくて、まどひ行きけり。 (九) ①咲きぬべきほどの、散りしをれたる庭など、 (1) 今にも咲いてしまいそうな(桜) (花) りいた庭など、 この木なからましかば、と覚えしか。 ( ) 道を知っている人もいなくて、迷いながら行ったそうだ。 わが入らむとする道はいとう細きに、 私が入ろうとする道はひどく暗く細いうえに、 のどかなる事は、もせず、やがてかけぬ心ととぬぬ 人は、一夜の中に、さまでかはるさまもみえめにやあらむ。の重 住する際なくして、死期既に近し。されども、いまだ病急なら 死におもむかざる程は、常にならひて、生の中におほ の事を成して後 しづかに道をせむと思ふほどに、病をうけて 死門にのぞむ時、所一事も成せず。 いふかひなくて、年月を 悔いて、この度もしたちなぼりて命を全くせば、夜を日につぎて、こ 事の事らず成じてひと、ひをおこすめど、やがて重り ぬれば、我にもあらず取り乱してはてぬ。このたぐひのみこそあら この事、まづ人々いそぎ心におくべし。 日本 日本 ex この木がないならば (どんなにかよかったのに、と思われた。 「いかに心もとなく思すらむ」と言ひて、 (十三ノ いまはてに、弓の音すなり。 (今昔物語・二五ノ一二) 言葉もまだ終わらないうちに、弓の音がするようだ。 「どこんなにか待ち遠しくお思いになっているだろう」と言って、 所を成じて後ありて道にむかはむとせば、所尽くべから 姫の生の中に、何事かなさむ。すべて所願妄想なり。 所 ならねども、これらにも、猫の経上がりて、 八九) 山ではないけれども、このあたりにも、年をとって、 心ありかかるにやあらむと思ひ疑ひて、 浮気心があってこのように寛大であるのだろうかと男は疑わ しく思って、 この人々の深志は、この海にも劣らざるべし。 この人々の深いは、この海の深さにも劣らないだろう。 ならましかば、かくよそに見侍らじものを。 一六七 私の専門であったならば、このように傍観していますまいものを。 徳大寺にもいかなる故かはべりけん。 (10) 大寺にもどのような理由がございましたのでしょうか。 助動詞のまとめ セットでまとめる助動詞の意味の違い 接続でまとめる助動詞 接続で区別する助動詞 20 接した過去の回想 経験過去 ・・・間に知った過去の回想(伝聞過去) 未来推量(だろう) らむ らる・す・さす・しむ・む・む ずまし・ず・・まほし (今ごろは・・・ているだろう) けむ・過去・・ただろう) →べし。 「ラ変型連体形 (・・・・・つ・ぬたり・けむ・たし らむ・めり・らし・ベレ・ まじなり(伝聞推定) 強調しまじ 連体形なり(新定)・たり(新定)ごとし 連体形体言 いらし的事実に基づく推量 未然形四段已然形・・・り ④連用形 +なり→断定 めり・・・覚的に基づく推 上下の接続 なり・・・覚に基づく推量 の正体がわかる 直前の活用 動詞→後の接続 文中の活 未然形 +ぬ→打消 「ず」 連体形 連用形 ぬ→完了 「ぬ」終止形 (未然形 +→打消 「ず」 已然形 運用 +ね→完了「ぬ」命令形 終止形(ラ変型連体形)+なり→伝聞・推定 +に→完了 「ぬ」連用形 連体形体に→断定 「なり」 適用形 ⑤四段変ラ未然形+る・れ→自発・可能 (a) サ未然形四段已然形+る・れ→完了・存続 受身・尊敬 "L+H() 心にきたらば、安心迷乱すと知りて、一事をもなすべからず。直 ちに万事を放下して道にむかふ時、さはりなく、所作なくて、心身な がくしづかなり。 (注)1 そのままの状態にとどまっていることなく 2 平生の人生はいつまでも不変なものであり、いつも平安に生 活していけるという考え 3 死門にのぞむ時・・・死を目前にした時 5 幻の生… 幻のようにはかない人間の一生 6 妄想った考え 7 心乱す…誤った考えが心を迷わせ乱す 8 下関係を断って 心身をすること 怠慢 9 com F 四 古典文法 200 P.62 200 P.102 学習日 税 悪 形

回答募集中 回答数: 0
情報:IT 高校生

15番の問題を教えてください

B 次の文の( )に入る適切な語句を記入しなさい。 バランスをシミュレーションしたい。 ある日 ( 0日目)の始めの牧場の草の量をxとする。牧場のヤギが1日に 食べる草の総量をy, 草の1日の増加率をeと仮定する。 また, モデルを簡 略化するため,草は1日の始めにeの倍率で増加すると考える。 0日目の終わりのときに残っている草の量は, ヤギが1日に食べる草の量と草が自然に増える量から, 牧場の草の需給 ① Xo ②2 y 3 e (5 y ) - (② )で示される。 (6) 草の増加率はeであるから, 1日目の始めの草の量x」は e x1 = =(③ ) x ((Ⓡ Xn- )) 草の量をxとすると, で示される。したがって、n-1日目の始めの草の量をx1日目の始めの Xo=X1 8 z (9) Xn= 9) = )x((® )) となる。このとき, 草が恒久的になくならず,かつ増えすぎないようにす るには,草が次の日の始めに同じ量に回復すればよい。 このとき, 0日目 と1日目を例に考えると,x0 とx」の間に (⑨ 立つことが分かる。 (10 X1 11 e 12 Xo の関係式が成り 13 20 そこで, ヤギが食べる草の量を観察したところ, y = 20kgであることが 分かった。よって, 草がなくならないためには, 0日目と1日目を考えて, X0, X1, e を用いた式で表すと, 14 1.25 b )=(Ⓡ )) が成り立つ。 0日目の始めの草の量が100kgであるとすると, 上の式と (⑨) の式から e=( )x((2 11)-( であれば,草は恒久的になくならず,かつ増えすぎないようになると分かる。 よって,草に与える肥料などを工夫して, 草の増加率が上記の値になる ように調整すればよいと考えられる。 ここで仮に, e= 1.1 だとすると, 草は ( 日目のうちに枯渇 する。現実的には,ヤギの食性や草の生育には天候・温度などさまざまな要 因が関係することが考えられるため、本来はより詳細なモデルが必要となる。 100=100-200 Xiex(Xo-20) x=11x(x-20) x=1.1x-2.2 X-1.1x=-2.2 ==+2.2 X=22 22

回答募集中 回答数: 0
1/123