学年

質問の種類

数学 高校生

解説お願いします。 黄色マーカー以前までは理解出来たのですが、黄色マーカーから紫マーカーへの流れがよく分からないです。 教えていただけると嬉しいです。 よろしくお願いします。

第1講 確率と漸化式 1 図のように、正三角形を9つの部屋に辺で区切り,部屋 P, Q を定める。 1つの球が部屋Pを出発し, 1秒ごとに,そのままそ の部屋にとどまることなく, 辺を共有する隣の部屋に等確率で 移動する. 球がn 秒後に部屋 Q にある確率を求めよ. P Q 《12 東大理科文科》 【著】3(金) 11- (nが偶数のとき) (nが奇数のとき) 【解説】 右図の様に P と Q 以外の部屋を定める. 最初に球はPの部屋にあることより, nが奇数のときには球はP,Q, R以外の部屋にあり, nが偶数のときには球はP,Q,R のどこかの部屋 にある. 以下を偶数とする. m+2秒後にQ の部屋に球があるのは 1 (I) m秒後にPにあり,確率 3 でAに移動して、確率 1/12 で Q に移動する. 1 (II) m秒後にQにあり,確率 でAに移動して、確率 1/12 でQに移動する。 3 1 (III) m秒後にQにあり,確率 でBに移動して,確率1でQ に移動する. 3 1 A R Q B (IV) m秒後にQにあり,確率 でCに移動して、確率 1/2でQに移動する。 3 (V) m秒後にRにあり、確率 1/3でCに移動して、確率 1/1 -で Q に移動する. の5つの場合だけ考えればよいので, n秒後にP,Q,R にある確率をそれぞれ Pn, Qn, Rn とすると, Qmtz=Pmx/1/31/1/2+Qmx1/2×1/28+Qmx/3×1+Q×1/2×1/2+Rmx/1/3×1/2 6 Qmtz=2/12 (Pa+Rm)+/Qm 2 3 が成り立つ。ここでPm+Qm+Rm=1よりPm+Rm=1-Qm を代入すると Qm+2=1/03(1-Qm)+/30m 6 ⇔ Qm+2= Qm + 2 == 1 | Qm + 1/14 2 6 ⇔ Qm Qm+2- + 2 − 1 = 1 ½ (Qm −1 ) ---① dm - 3 2 となり,最初球がPにあることよりQ = 0 と定めることができるので,Q=0と① より Q2n = {1-(2)"}

回答募集中 回答数: 0
数学 高校生

(2)の(ア)の解答のマーカー引いてある部分がなぜこの式変形になるのか教えて欲しいです

628 基本 28 内心、傍心の位置ベクトル 00000 (1)AB=8. BC=7,CA=5である △ABCにおいて、内心を1とするとき、 を AB, AC で表せ。 (2) AOAB において, OA=d, OB= とする。 別解 ベク とす (ア) を2等分するベクトルは,k ることを示せ。 (+) (kは実数, k≠0) と表され OA' 形O 点 C よっ (イ) OA=2,OB=3, AB=4 のとき, ∠Oの二等分線と ∠Aの外角の二等分 指針 線の交点をPとする。 このとき,OP を で表せ。 (1)三角形の内心は,3つの内角の二等分線の交点である。 次の「角の二等分線の定理」 を利用し, まずAD を AB, AC で表す。 右図で AD が △ABCの∠Aの二等分線 ⇒ BD:DC=AB: AC 次に, △ABD と ∠Bの二等分線BIに注目。 基本 26 (2)Oの二等分線と辺ABの交点をDとして,まずODを,で表す。 [別解] ひし形の対角線が内角を2等分することを利用する解法も考えられる。 つ まり, OA'=1, OB'=1 となる点 A', B' をそれぞれ半直線 OA, OB 上にとっ てひし形 OA'CB' を作ると,点Cは ∠Oの二等分線上にあることに注目する。 (イ)(ア)の結果を利用して, 「OPをa, で2通りに表し、係数比較」 の方針で。 AC=OA となる点Cをとり, (ア)の 点Pは∠Aの外角の二等分線上にある → 結果を使うとAPはa で表される。 OP = OA+APに注目。 (イ) 点 20 らっ OP AC と、 ZE よ a 0 解答 (1) △ABCの∠Aの二等分線と辺BCの交点をDとすると BD: DC=AB: AC=8:5 ZCの二等分線と辺 A ABの交点をEとし AE: EB=5:7, 5AB + 8AC 別解 よって AD= 10 13 8 15 EI:IC=:5 8 56 また, BD=7・・ であるから =2:3 A 13 13 56 B 7 D C AI: ID=BA: BD=8: -=13:7 このことを利用して もよい。 13 角の二等分線の定理 ゆえに 15 ゆえに 0D= |6|0A+|4|OB |a|+|6| AI=2AD=1.5AB+8AC-1AB+/AC 20 20 13 (2)Oの二等分線と辺AB の交点をDとすると AD: DB=0A: OB=||:|| を2回用いると求め られる。 角の二等分線の定理 を利用する解法。 検討 0 aba a+ba 61 + (2) 練習 (1) |4| D|6| ③ 28 (2 求めるベクトルは, t を t≠0 である実数としてtOD と表 ab される。 |a|+|6| t=kとおくと, 求めるベクトルは (+) (kは実数, k≠0) a A tOD=|al|b a+ba +

回答募集中 回答数: 0
物理 高校生

(1)を図ありで説明して欲しいです🙇‍♂️

2.0m/s 例題 3速度の合成 →8 解説動画 流れの速さが2.0m/sのまっすぐな川がある。 この川を,静水上を4.0m/sの速さで進む船 川を直角に横切りながら、 対岸まで進む。 このとき, 川の流れの方向をx方向, 対岸へ向かう 方向を方向とする。 (1) 静水上における, 船の速度のx成分を求めよ。 (2) 静水上における, 船の速度の成分を求めよ。 第1章 ◆(3) へさきを向けるべき図の角8の値を求めよ。 脂指針 川の流れの速度と船 (静水上)の速度の合成速度の向きが, 川の流れと垂直になる。 解答 (1) 船が川を直角に横切るとき, 船の速度のx成 分と, 川の流れの速度は打ち消しあっている。 よって 船の速度の成分は (2) 船が川の流れに対して直角に進 むので、 右図のように,船 (静水 上)の速度と川の流れの速度の 合成速度が、川の流れと垂直に なる ここで, PQR は辺の比 が1:2:√3 の直角三角形であ る。 2.0m/s ① QR へ60° 4.0m/s 09 1 P2.0m/s よって PR=2.0√3≒3.5 ゆえに、船の速度のy成分は 3.5m/s 別解 三平方の定理より PR=√4.0°-2.02=√12=2√3 3.5 (3)(2)より0=60° [注] 川を横切る船はへさきの向きとは異なる向きに進 む。 [注 √31.732・・・ や, √2 1414・・・ などの値は覚え ておこう。 演の

回答募集中 回答数: 0
1/616