学年

教科

質問の種類

経営経済学 大学生・専門学校生・社会人

ピグー効果という例外を除いたとして、 単純に「貨幣市場が流動性のわなに陥っている場合には、物価の下落によって実質貨幣供給量が増加してもそれが国民所得の増加をもたらさないので、総需要曲線は垂直となる。」理由を教えてほしいです。

Ⅰ 【問題22-2】 国民所得と物価水準の関係を表す総需要曲線と総供給曲線に関する次の記 述のうち, 最も妥当なのはどれか。 1. 政府支出の増加は, IS曲線の右上方へのシフトを通じて総需要曲線を右 Movie 145 上方へシフトさせるが, 総需要の増加に対応して生産が拡大するので総供給曲線を右 下方へシフトさせることになる。 ! 2. 貨幣市場が流動性のわなに陥っている場合には、 ピグー効果が働かないとすれば 物 価の下落によって実質貨幣供給量が増加してもそれが国民所得の増加をもたらさない ので,総需要曲線は垂直となる。 ! 3. 総供給曲線の傾きは投資の利子弾力性の大きさによって決定され, 利子弾力性がゼロ! の場合には,総供給曲線は垂直になり, 弾力性が無限大の場合には水平となる。 4. 貨幣供給量の増加は、物価の上昇を通じて総供給曲線を左上方にシフトさせるだけで なく,利子率の低下を通じて投資を増加させるので,総需要曲線を右上方へとシフト させる。 5. 貨幣賃金が上昇する場合には,労働供給量の増加により生産が拡大するので,総供給 曲線は右下方にシフトするが, 賃金上昇が消費需要を拡大させるので、総需要曲線は 右上方にシフトすることになる。 (国家Ⅱ種)

回答募集中 回答数: 0
経営経済学 大学生・専門学校生・社会人

図の横軸が古典派は労働量(N)[N=時間]なのにケインズ派では労働量(人)としているのはなぜですか?

できます 図表 2 供給曲線 のとき 雇いたい 過供給, きないと 3. 古典派の労働市場についての考え方 右下がりの市場の労働需要曲線(図表 21-4)と右上がりの市場の労働供給曲線 (図表21-8) を図表21-9に描きます。 古典派は,労働市場における需要と供給が 等しくなるように実質賃金率が決まると考え ます。いいかえれば, 実質賃金率が動くこと によって労働市場の需要量と供給量は等しく なります。 ですから、失業, つまり,超過供 給があっても,それは実質賃金率が (1) 1 Part Movie 134 図表21-9 古典派の労働市場 実質賃金率 失業 労働供給曲線 超過供給 (NS) H A ↓ B ENs=No 労働需要曲線 (No) CO 6 このように高いからであり、実質賃金率の下落 によって解消すると考えます。 ですから,経 済は常に完全雇用ということになります。 0- AD-AS分析・AD-AS分析 古典 (実質) 貨幣(名 いるのて N*労働量(N) 15. O 4. ケインズの労働市場についての考え方 ケインズは, 古典派の第一公準から導いた 右下がりの需要曲線を受け入れます。 しかし, 古典派の第二公準から導いた右上がりの供給 曲線は受け入れず, 貨幣 (名目) 賃金率 (W) は古典派が主張するようには自由に動かず, 下がりにくいとします。 これを貨幣 (名目) 賃金率の下方硬直性といいます。 ケインズの考えを図表21-10に描くと, 貨幣(名目) 賃金率の下方硬直性を表現する ために,縦軸は実質賃金率ではなく, 貨幣 (名目) 賃金率とします。 横軸は労働量です。 ケインズも古典派の右下がりの需要曲線は 受け入れているので、右下がりの労働需要曲 線 (ND)です。 供給曲線 (Ng)については貨幣(名目) 賃金率の下方硬直性を仮定するので,ここで はより貨幣 (名目) 賃金率は下がらな いとすると,供給曲線はWで水平の部分が 244 名目賃金率(W) では, いのでし Movie 135 不況期 図表21-10 ケインズの労働市場 せんから インズの 失業 || Ns J7 期 超過供給 W1 H A WE B ハッヒ ると言え インズ派 のではな 現実経済 のです。 • No 0 Ne 労働量(人)

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

この問題の解答を作っていただけませんか。院試の勉強に役立てるつもりです。

問題1 粒子の質量 m、ばね定数K の1次元調和振動子を考える。波動関数 y=N.exp( 26 ) yo N=exp(-1211 ) exp(61) - 2017(6) 00: = non! を考える。ここで、yは1次元調和振動子の基底状態、*およびらはフォノンの生成および消滅演 算子 z は複素定数である。 (4) (5) の解答はm、 K を用いずに、講義でも用いた実定数 1 a = V h = = ħ² (mk) = ½ 4 mo z、および、hを用いて表せ。 (1)は規格化されたエネルギー固有関数y=(6) を用いて 8 1 y = N₂Σ n=0 Vn! と表すことができることを示せ。 (2)yが演算子の固有関数であることを示せ。 さらに固有値を求めよ。 (3)が規格化されていることを示せ。 (4)yによる位置演算子の期待値x、運動量演算子のx 成分 px の期待値を求めよ。 (5)位置のゆらぎ4x=√<yl(i-xy)、および運動量のx成分のゆらぎ4p=<yl(p.-P)^v)を を求めよ。 この結果を用いて、不確定性関係が満たされていることを確認せよ。 (6) 初期条件(0)=yの場合の時間に依存したシュレディンガー方程式の時刻 t での解をy(t) と 表す。B(t)=(y(t) (1) とする。 〈4 (1) 6y(t)) をB(t) を用いて表せ。 (7) B(t)の満たす微分方程式を導出し、その一般解を求めよ。 (8)時刻tでの解y(t)による、位置、運動量のx成分の期待値を求めよ。初期状態のzは z=rexp(i0)、 ここでおよび0は実数である、で与えられるとし、期待値を、a、r、 0、 w、 t、および、hを用 いて表せ。

回答募集中 回答数: 0
1/90