学年

教科

質問の種類

資格 大学生・専門学校生・社会人

簿記の仕分け問題です 全くわからず、 5問あるので回答と解説をお願いします。

第1問 下記の各取引について仕訳しなさい。 ただし、 勘定科目は、 次の中から最も適当と思われるものを選ぶこと。 現 金当 座 預 金別段預 金買 掛 金受取手形 新株式申込証拠金 資 本 金繰越利益剰余金 資本準備金 その他資本剰余金 未 収金 未 払 金支払利息受取利 息備 車 品 両備品減価償却累計額 車両減価償却累計額減価償却費固定資産売却益 固定資産売却損 支払手数料受取手数料前 払 利 息未払利息 前受利息 未 収 利 息 有価証券利息繰 越 商 品未払法人税等 仮払法人税等研究開発費法人税等 1. 当期首に営業用の乗用車を ¥2,500,000 翌月末払いの条件で購入し、 従来使用していた乗用車 (取得原価 ¥2,000,000、 減価償却累計額 ¥1,800,000、 間接法で記帳) については、 ¥300,000 で下取りされることとなっ た。この下取価格は新車代金の支払額から差し引くこととされた。 2. 決算にあたり、 当期の法人税 ¥2,500,000 住民税 ¥500,000、 事業税 ¥700,000 を見積もった。 なお、中間申 告の際に、 前年度の納付税額の合計 ¥3,100,000 の50%を現金で納付していた。 3. 当月の研究開発部門の人件費 ¥200,000 と研究開発用の材料の購入代金 ¥250,000 を小切手を振り出して支払 った。また、研究開発目的のみに使用する実験装置 ¥500,000 を購入し、 その支払いは翌月末払いとした。 4. 決算の1か月前に満期の到来した約束手形 ¥3,000,000 について、 満期日の直前に手形の更改 (満期日を3か月 延長)の申し出があり、 延長3か月分の利息 ¥120,000 を含めた新たな約束手形を受け取っていたが、 未処理で あることが決算時に判明した。 なお、あわせて利息に関する決算整理仕訳も行った。 5. 新株 10,000 株の募集を行い、1株につき ¥2,500 で発行することとし、 申込期日までにその全額が申込証拠金 として別段預金に払い込まれていたが、 申込期日が到来したため、 その払込額を資本金に振り替え、別段預金は 当座預金へと振り替えた。 資本金への振替えは、 会社法で認められている最低額を計上することとした。

回答募集中 回答数: 0
化学 大学生・専門学校生・社会人

bの問題で、解答の最後の1行の意味が分からないので教えて欲しいです

問4 次の文章を読み, 後の問い (ab) に答えよ。 Bがコックでつながれている。 コックを閉じた状態で, 容器A には, 一酸化炭 容積が2.0Lの容器Aと, ピストン付きで容積を変化させることのできる容器 素 CO を 27℃で 1.0×10°Pa になるように封入した。また,容器 B には、容積 が 1.0L になる位置でピストンを固定した状態で,酸素 O2 を 27℃で3.0×10 Paになるように封入した。 これを状態Ⅰ とする (図3)。 b状態Iからコックを開いて, 容器Bのピストンを完全に押し込んで、容器 B内の気体をすべて容器 Aに移したのち, 再びコックを閉じた。 次に, 容器 A内の気体に点火し, COを完全に燃焼させた。 燃焼後, 温度を27℃に戻し たとき、容器 A内の圧力は何Pa になるか。 最も適当な数値を,次の①~⑥の うちから一つ選べ。 27 Pa 容器A コック 容器 B Coo O2 ピストン 1.0×105 Pa 3.0×10 Pa Joa 2.0L 1.0L 図3 状態 Iにおける容器 A, B内の様子 a 状態Ⅰから, ピストンを固定したままコックを開いて, 十分な時間放置した。 このとき、容器内の圧力は何 Pa になるか。 最も適当な数値を、次の①~⑥の うちから一つ選べ。 ただし, 容器内の温度は27℃に保たれているものとする。 26 Pa ① 1.0×105 (2) 1.7×105 ③ 2.0 × 105 2.3×105 3.0×105 ⑥ 4.0 × 105 ① 1.0×105 ④ 2.5×105 ② 1.5×105 2.0×105 3.0×105 ⑥ 3.5 × 105 -33- 20

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

解析のテストです。 これの大門1が分かる方いらしたら、教えて欲しいです!

18:30 (2.1) 極限 解析学 II 中間試験 試験問題 (平成30年11月27日 (火) 3時限 実施) 注意 第1問 第2問 第3問 第4問 第5問 第6問 すべてに解答して下さい。 解答は問題ごとに解答用紙の所定の箇所に記入して下さい。 解答用紙 (両面使用) は合計3枚あります。 すべての解答用紙 (3枚) にクラス, 学籍番号、氏名を記入して提出して下さい。 白紙の解答用紙にもクラス, 学籍番 号 氏名を記入して提出して下さい。 = [第1問] 関数 g(x,y) について、以下の問いに解答せよ. (1.1) g(x,y) , 点 (12) における1次の近似多項式 P1 (x,y) は, P1(x,y) = e-2 + 4e-2(z-1)-4e-2(y-2) で与えられることを示せ . 以下, (1.1) にて求めた Pi (x,y) を f(x,y) とおく. (1.2) 点 (x,y)=(1,2) における f(x,y) の勾配 grad f (1,2) を求めよ. (13) f(x,y) の v = ($n) ∈ R2 方向の (x,y)=(1,2)における方向微分 Duf (12) を求めよ. ただし ||||=1 とする (1.4) 関数 g(x,y), f(x,y) のグラフ=g(x,y), z=f(x,y) に関して、点(x,y) = (1,2) を通る 等位曲線をそれぞれ C2, Cf とおく. Cg, Cf の方程式をそれぞれ求めよ. (15) (14) にて求めた等位曲線 C, Cf と, grad g(1,2) の概形を同一の ry平面に描け ただし、 grad g (1,2) は点 (1,2) をベクトルの始点とすること. [第2問] 次式で与えられる関数 f(x,y) について, 以下の問いに解答せよ. 22 ((x,y) / (0.0) のとき) /12+12 ((x,y)=(0.0) のとき) 中間試験 H39.pdf f(x,y)= 2 f(x, y) = 0 lim (x,y) (0.0) <x2+y2 y² (2.2) 関数 f(x,y) が (x,y)=(0,0) において連続かどうか調べよ. を調べよ. [第3問] 次式で与えられる関数f(x,y) について, 以下の問いに解答せよ. x² + y² x² + y² ((x,y) / (0.0) のとき) ((x,y) = (00) のとき) (3.1) 極限に基づく偏微分係数の定義に従って (0,0) を求めよ. (3.2) 偏導関数 f(x,y) を求めよ. … 4G 0 完了 [第4問] C2級の関数f(x,y) について以下の問いに答えよ. (4.1) f(x,y) とz= ecose, y = esine との合成関数f(ecose, esine) に対して0に関す dz d²z ある導関数 および をそれぞれ 0 の関数として求めよ. do d02 (4.2) f(x,y) とz=rcosb,y=rsin0 との合成関数z= f(rcos0,rsine) に対しての母に を,r, 0 の関数としてそれぞれ求めよ. 8²% az 関する偏導関数 および2階偏導関数 20¹ arae [第5問] 関数 f(x,y)=√1+2x-yを考える. 以下の問いに解答せよ. (5.1) 偏導関数 f(x,y), fy (x,y) を求めよ. (52) 2階偏導関数 f(x,y), fry (x,y), fuy (x,y) をそれぞれ求めよ. (5.3) 点 (x,y,z)=(1,1,f(1,-1)) における曲面z = f(x,y) の接平面の方程式を求めよ. (5.4) 点 (x,y) = (1, -1) のまわりでの f (x,y) の2次の近似多項式を求めよ. Q [第6問] 関数 f(x,y)=x^-4xy+2y² の極値を調べよ(極値とそのときの (x,y) の値を求める こと) ....

回答募集中 回答数: 0
1/3