学年

教科

質問の種類

資格 大学生・専門学校生・社会人

日商簿記3級のサンプル問題です。 すべての問題の正答を教えていただきたいです。 よろしくお願い致します。

第1問 下記の各取引について仕訳しなさい。 ただし、 勘定科目は、 設問ごとに最も適当と思われるものを選び、 答案 用紙の()の中に記号で解答すること。 なお、 消費税は指示された問題のみ考慮すること。 1. かねて借方計上されていた現金過不足 ¥5,000 の原因を調査したところ、 同額の手数料の受取りが二重記 帳されていることが判明した。 ア. 雑益 エ. 現金過不足 イ. 受取手数料 オ. 支払手数料 ウ. 現金 カ 雑損 2. 郵便局で、 郵便切手 ¥400 を現金で購入するとともに、 店舗の固定資産税 ¥32,000 を現金で納付した。 なお、 郵便切手はすぐに使用した。 ア. 受取手形 エ. 支払手数料 イ. 現金 才. 支払家賃 ウ. 通信費 カ租税公課 3. 商品 ¥180,000 を仕入れ、 代金のうち ¥30,000 は注文時に支払った手付金と相殺し、 残額は掛けとし た。 なお、当社負担の引取運賃 ¥2,000 は現金で支払った。 ア. 仕入 エ. 前払金 イ. 買掛金 才、現金 ウ. 前受金 カ. 仮払金 4. 広告宣伝費 ¥53,000 を普通預金口座から支払った。 その際に、 振込手数料 ¥500 がかかり、同口座から 差し引かれた。 ア. 当座預金 イ. 旅費交通費 広告宣伝費 オ. 支払手数料 ウ. 普通預金 カ. 受取手数料 5. 飛騨株式会社に対する買掛金 ¥290,000 について、 電子記録債務の発生記録の請求を行った。 ア. 電子記録債権 エ. 受取手形 イ. 支払手形 オ. 買掛金 ウ. 売掛金 カ 電子記録債務 6. 銀行から借り入れていた借入金 ¥800,000 の返済日になったため、元利合計を普通預金口座から返済した。 なお、 借入れの年利率は1.8%、 借入期間は当期中の9か月間であり、 利息は月割計算する。 ア. 支払利息 エ.借入金 イ. 支払手数料 オ貸付金 ウ. 受取利息 カ. 普通預金 7. 従業員の給料 ¥600,000 の支給に際して、 所得税の源泉徴収額 ¥32,000 住民税の源泉徴収額 ¥43,000 および従業員負担の社会保険料 ¥52,000 を差し引いた残額を普通預金口座から支払った。 ア. 法定福利費 所得税預り金 イ. 普通預金 オ. 社会保険料預り金 ウ. 住民税預り金 力. 給料 8.建物の賃借契約を解約し、 契約時に支払っていた保証金 (敷金) ¥360,000 について、 修繕費 ¥122,000 を差し引かれた残額が当座預金口座に振り込まれた。 ア. 差入保証金 エ. 支払手数料 イ. 修繕費 才. 支払家賃 ウ. 当座預金 カ. 受取手数料

回答募集中 回答数: 0
化学 大学生・専門学校生・社会人

至急 有効数字について この問題だと有効数字の幅が8.35〜8.45で、実際の誤差幅は8.27〜8.51です。 有効数字は数値がどこまで信頼出来るかを示した物だと思うのですが、仮に体積が8.51だったら、有効数字で示した値の中に答えが含まれていないことになります。 これは... 続きを読む

問題1-10 電卓を用いて以下を計算せよ. (1) 2÷7 (2) 直方体の体積を求めるために, Aさんが縦の長さ, Bさんが 横 Cさんが高さを測定した. 彼らはそれぞれ10cm, 1cm, 0.1mm刻みの精度の異なったものさし定規を用いて測定してし www 10cm まい, これらの値として4.2m,234cm, 85.35cm を得た. 直方 体の体積はいくつと表示するのがベストだろうか, 数値はどこま で信用できるだろうか. 0.1mm 1 cm (2)単位を合わせると 4.2m, 2.34m, 0.8535m となるので, 4.2m×2.34m×0.8535m= 8.388198m² なる値が求まる. しかし, 4.2mという測定値は4.15 4.2 4.25を四捨五 入して得た値なので4.2m±0.05m を意味する。 つまり、この値は±0.05m (± 0.05/4.2 ×100=±1.2%) の誤差をもつ。 同様に2.34mは2.34±0.005 (誤差± 0.005/2.34×100= ± 0.21%), 0.8535m は 0.8535 ± 0.00005 (誤差± 0.00005/0.8535 × 100=0.006%) を意味す る. したがって、この値を用いて計算した8.388198m² なる体積は± 1.2% ± 0.21% ± 0.006% =±1.4% の誤差をもつ つまり (8.388198 ± 0.117435) m である. それゆえ,この直 方体の体積は8.388 0.117=8.39 ±0.12(8.27~8.51)=8.4m² と表せば十分である. 8.4 の意味は 8.35~8.45 であり、 実際の誤差幅よりも小さい. 8.4 という答ですら多 めの有効数字を示したことになる.つまり,計算結果は4.2, 2.34, 0.8535の三つの測 定値の有効数字の桁数 2, 3, 4桁のうちのもっとも小さい桁数2桁に合わせて示せばよ いことがわかる (1桁下の3桁目を四捨五入して示すのが常識) 実験データ処理におけ る有効数字の扱いは, 以上のように測定値の精度に依存する すなわち, 有効数字は測定値の精度を反映したものである. 1000's GD 01 (0 0800.0 -0.21% 12% 12% x6/180.18=0.3999(0.4000)

回答募集中 回答数: 0
1/164