学年

教科

質問の種類

経営経済学 大学生・専門学校生・社会人

ミクロ経済学の問題です! 解説も含めて教えてください🙏

問2 次の設問に答えなさい。 解答の際には答だけではなく、 導出過程も含めて示すこと。 (1) ある団子店の団子は、1本の価格が100円のとき一日の需要量は200本である。 この団子の需 要の価格弾力性が1.2のとき、 この団子を1本120円に値上げすると需要量は何本になるか。 (2) 需要の価格弾力性がつねに 0 となるような需要曲線を描きなさい。 (3)需要曲線がD=a/p (ただしa>0,p>0) で表されるとき、 需要の価格弾力性を求めよ。 (4) 需要の価格弾力性がつねに1となるような需要曲線のグラフを描きなさい。 ' 問3 Aさんは干し柿を作っている。 干し柿の生産関数は、 生産量をx (個) 労働投入量をL (人) として、x=100L.5 と表される。 以下の問に答えよ。 解答の際には答だけではなく、 導出過 程も含めて示すこと。 (1) 労働の限界生産物を求めなさい。 (2) 労働の限界生産物が逓減することを示しなさい。 (3) 生産関数を労働投入量Lについて解きなさい (つまり=.. の形に変形しなさい) (4) 機械などの固定費用が9万円、 労働者を1人雇うのにかかる人件費が1万円であるとしよう。 この干し柿の費用関数 (c) を求めよ。 (5) (4) で求めた費用関数をグラフに描きなさい。 ' • (6) (4) で求めた費用関数をもとに、 限界費用 (MC) 平均費用 (AC) 平均可変費用 (AVC)を数式で示しなさい。 · (7)限界費用 (MC) 平均費用 (AC) 、 平均可変費用 (AVC)、 (4) で描いたグラフの下 に、 横軸の縮尺を変えずに描きなさい。 その際、 費用関数との関係がわかるように描くこと。 ヒント:ACについては数学Ⅲを習っていない人には一見すると難しいかもしれないが、 例えば10 個くらい点をプロットし、それらを結んで概形を描いてみよ。 その際、 最小値がどこを通過する のかしっかり明示すること。 (8) この干し柿の短期の供給曲線を (7) で描いたグラフ中に示しなさい。

回答募集中 回答数: 0
経営経済学 大学生・専門学校生・社会人

ミクロ経済学です。 3番以降を教えて欲しいです!!

問1 図は完全競争市場における、 ある財の需要曲線Dと供給曲線Sを示したものである。 価格 × S 需要量供給量 (1)完全競争市場の条件を4つ挙げよ。 (2) 市場均衡点を図示せよ。 図は適宜自分で描くこと。 (3) 図の市場均衡点における消費者余剰 (cs) と生産者余剰 (PS) を (2) で描いた図中に図示し なさい。その際、 CSとPSがしっかり区別できるよう示すこと。 (4) いま、この財に対する需要が高まったとしよう。 この時、 新しい需要曲線D を (2) で描い た図の中に示しなさい。 (5) 元の需要曲線Dと供給曲線Sの市場均衡点における社会的余剰の大きさをSWとする。 新しい 需要曲線D と供給曲線sの市場均衡点における社会的余剰sw の大きさは、 元のswと比べてどうな るか。 (6) 実は最近、 この財の生産に際して、一単位あたりNだけ環境汚染による外部費用が生じてい ることが判明した。 外部費用を考慮した社会的限界費用曲線s を新しい図に描きなさい。 (7)(6)の図中に、 環境汚染を考慮せずに生産を行ったときに生じる外部費用と死荷重の大き さを示しなさい。 外部費用と死荷重がしっかり区別できるよう示すこと。 (8) (7) で示した死荷重を取り除くためには、生産者に対してどのような対策をとったらよい か。 問2 次の設問に答えなさい。 解答の際には答だけではなく、 導出過程も含めて示すこと。 (1) ある団子店の団子は、1本の価格が100円のとき一日の需要量は200本である。 この団子の需 要の価格弾力性が1.2のとき、 この団子を1本120円に値上げすると需要量は何本になるか。 (2) 需要の価格弾力性がつねに0 となるような需要曲線を描きなさい。 (3) 需要曲線がD=a/p (ただしa>0,p>0) で表されるとき、 需要の価格弾力性を求めよ。 (4) 需要の価格弾力性がつねに1となるような需要曲線のグラフを描きなさい。

回答募集中 回答数: 0
経営経済学 大学生・専門学校生・社会人

1つでもわかる方教えてください🥹🙏

問題 2.1 掛け金を宣言した後、確率 0.8で掛け金を受け取り、確率 0.2 で掛け金を支払うというギャンブルがあ る。 現在1万円を所持しているあるギャンブラーは、0万円以上1万円以下の中で, 掛け金をどれだけにしようか考え ている。なお,このギャンブラーのリスク下の選好は期待効用仮説に従い、所持金x 万円に対する効用はu(x)=logx で 表される (log は自然対数) と仮定する。 (1) 掛け金∈ [0,1] の下で,最終的な所持金を X とする。 X の確率分布を求めよ。 (2) 最終的な所持金 X の期待値 E[X] および期待効用 Eu (X)] を (変数の式として)求めよ。 (3) 以下の掛け金の場合において, E[X] と [u (X)] を (比較のため必要に応じて数値的近似値で)求め,これら5 つの掛け金の間で,ギャンブラーの選好順序がどのようになっているか答えよ。 (4) •r=0 (ギャンブルをしないこと) • r = 0.25 • r = 0.5 • r = 0.75 r=1 (ギャンブルに全額をつぎ込むこと) 確率変数X の期待値と期待効用を図で表現せよ。 《ヒント: 授業内容を参照すること。> =0.5のとき, (5) ギャンブラーが選ぶべき掛け金∈ [01] を求めよ。 《ヒント:110g(+1)= log(1-1)=1/11/

回答募集中 回答数: 0
歴史 大学生・専門学校生・社会人

お願いします

問題 1. 以下の文章の空欄 A~Tにあてはまる適語を、語群の中にある(あ) (ん)から選んで記号で答えよ。 税制が備えるべき望ましい条件を示したものである租税原則は、古くは16世紀の経済学の父として有名な(A)の4原 則が有名である。 (A)は、政府の役割は市場で供給できない (B)、行政、(C)などの必要最小限でよいと考え た。この考え方は(D)と呼ばれている。 (A)は課税の根拠として (E)によった。一方、(F) 世紀のドイ ツ歴史学派に所属した (G)は課税の根拠として(H)によった。 ( A ) 以降、租税原則はさまざまな形で発展し、 現在の租税原則として ( 1 ) (J) (K) の3つに集約されている。 1つ目の(Ⅰ)の考え方としては、 「経済的 にみて等しい状態にある人々は等しく取り扱われる」という(L) と、 「税負担能力の大きなものがより大きな租税負担を すべきである」という(M)がある。2つ目の(J)の考え方は、経済における (N)にゆがみをもたらさないよ うな課税が望ましいというものである。 この(N)へのゆがみのことを ( 0 ) とよぶ。 例えば、消費税による(N) へのゆがみを小さくしようとするならば、 価格弾力性が (P)財に重課、 価格弾力性が ( Q ) 財に軽課すべきであると いう考え方がある。これは(R)と呼ばれている。3つ目の(K) は、 税制がわかりやすいものであるべきであり、こ れによって(S) と(T)の費用が少なくなるというものである。 語群 (あ)計測性 (い)ワグナー (う)所得分配 (え)行列的公平 (お) 18 (か)国防 (き) 高い (く) 食糧供給 (け)弾力性命題 (こ)配達 (さ)夜警国家 (し)水平的公平 (す)低い (せ)アントニオ (そ)公正的公平(た)資源配分 (5) 天下泰平(つ)ス ミス (て)強制説 (と)徴税 (な)簡素(に)暗黙説 (ぬ)ロールズ (ね)義務説(の)実証説 (は)効率性(ひ)普遍性 (ふ)ラムゼー・ルール (へ)超過負担 (ほ)国民年金 (ま)利益説 (み)16 (む)分権性(め)流通 (も)公共的公平(や)確実 (ゆ)民主国家 (よ)垂直的公平 (5)19(り)17 (る) 納税 (れ) 司法 (ろ) 歪曲分配 (わ)資金循環(を)強靭国家 (ん)公平性 問題 2-1. 下の文章における空欄(①)から(2)を語群から選んで埋めよ。番号は違えども同じ語句が入ることが

回答募集中 回答数: 0
1/15