学年

教科

質問の種類

数学 大学生・専門学校生・社会人

問題1.3教えて頂きたいです。

4 第1章 術の 問題1.3 0でない整数 a,6,cに対して, 次が成り立つことを示せ。 1.2 約数と倍数 (1)a|bかつ6|a → a=D±6. まず、約数と倍数の定義の復習から始めよう。 (2) a|bかつ6|c → a|c. (3) a|b → ac| bc. 定義1.1 整数a,6に対して、6 = acとなる整数cが存在するとき、 「aはbを割り切る」または 「bはaで割り切れる」 と言い。 a|bと表す。また、aをもの約数 (divisor) と呼び, bをaの 倍数(multiple)と呼ぶ. 一方, aが6を割り切らないときは, atbと表す。 定義1.4 a1,…, an を整数とする。 (1) a1, ,an のすべてを割り切る整数を a1, an の公約数 と呼ぶ、また,最大公約数 GCD(a1,… … , an) を次で定義 する。 * あるiに対してa; +0であるとき, a1,……Qn の公約 数の中で最大のものを GCD(a1,.….,an)とする。 cd 単に約数や倍数と言うときは負の整数も考えていることに注意す る。例えば,6の約数は±1, ±2, ±3, ±6の8個である.ESYe ●GCD(0, ,0) 3D0. 特に,整数 a,bに対して GCD(a,6) = 1 であるとき, a ともは互いに素であると言う。 命題1.2 (1)任意の整数aに対し, ±1 と±aはaの約数である。 (2) 1の約数は+1の二つのみである。 (3) 任意の整数は0の約数であり, 0の倍数は0のみである。 (2) a1, ,a, のすべてで割り切れる整数を a1, an の公倍 数と呼ぶ、また, 最小公倍数 LCM(aj, . ., an) を次で定 の 義する。 [証明明(1) e== +1 とおくと,e.ea=D aであるから, eと eaは *すべてのiに対して a; + 0であるとき, a1,, an の aの約数である。 る正の公倍数の中で最小のものを LCM(a1,.., an) とす 会 (2) aを1の約数とし, ac=1をみたす整数cを取れば、 る。 上い * あるiに対して a;=0であるとき, LCM(a1, .… , an)=0. 1= {ac| = |a||e| >_a|>1. 従って、a = 1, 即ち, a=±1 である。 (3) 任意の整数aに対してa-0=0であること(命題 8.3(1) を 参照)から(3) が従う。 (agad+ ( + + キ ロ 5) GCD はgreatest common divisor の略。 6) LCM は 1east common multiple の略。

未解決 回答数: 1
数学 大学生・専門学校生・社会人

大問2なんですけど、矢印のところの考え方がわからないです。成分の表し方まではわかるんですけど、その図形的な見方がわかんないです、、教えてください、!

f(z) = °-3+2とする. また, aは1より大きい実数とする. 曲線C:y= f(x)上の点P(a, fla) | における接線と軸の交点をQとする.点Qを通るC の接線の中で傾きが最小のものをしとする。 158- - 橋大 橋大学- (前期日程)◇商 経済法 社会◇ [時間) (入試科目) 数I·II·A.B ((例ベ 120分 (試験日) 2月25日 pを自然数とする。 数列 {an} を a1 = 1, a2 = p*, an+2 = an+1 - an + 13 (n = 1, 2, 3. ) により定める。数列 {an}に平方数でない項が存在することを示せ。 2 点A(2, 2) に対して OF = (OA- OQ)Og を満たす点Pの軌跡を求め,図示せよ。 (1) 1とCの接点のェ座標をαの式で表せ。 (2) a =2とする。 1とCで囲まれた部分の面積を求めよ。 原点をOとする座標平面上に,点(2, 0)を中心とする半径2の円C」と, 点(1, 0) を中心とする半。 の円 C2 がある。点Pを中心とする円 C3 は Ci に内接し,かつ C2 に外接する.ただし、 Pはの超いに ないものとする。Pを通りェ軸に垂直な直線とx軸の交点をQとするとき,三角形 OPQの面積の影計 値を求めよ。 左下の図のような縦3列横3列の9個のマスがある. 異なる3個のマスを選び,それぞれに1枚ずつコ インを置く、マスの選び方は, どれも同様に確からしいものとする. 縦と横の各列について, 点数を次 のように定める。 · その列に置かれているコインが1枚以下のとき, 0点 その列に置かれているコインがちょうど2枚のとき, 1点 その列に置かれているコインが3枚のとき, 3点 縦と横のすべての列の点数の合計を S とする. たとえば,右下の図のようにコインが置かれている場合 縦の1列目と横の2列目の点数が1点,他の列の点数が0点であるから, S=2となる。 (1) S=3となる確率を求めよ。 (2) S=1となる確率を求めよ。 (3) S=2となる確率を求めよ。 B (漸化式, 約数と倍数, 素因数分解) A 解答] 自然数kを用いて

回答募集中 回答数: 0