学年

教科

質問の種類

数学 大学生・専門学校生・社会人

統計学の問題です。全部分かりません。教えてください。

③3 確率×Yを以下のように定義する。 2 W.P. 1/6 W. P. x = 3 4 16 w. P. 1/5 w.P. 1/6 Y = 0 w.p. 112 wp. 1/6 I W. P 3/10 In 5 6 W. P. 1/6 1/6 W. P (1)XとYの確率関数をそれぞれfx(水).fy(y)とする。このとき、fx (1) fx(5) fy(0) fy(1).fr(2)の値をそれぞれ求めなさい。 (2)XとYの分布関数をそれぞれFx(水),Fy(y)とする。このとき、FX(0) FX(5) FY (0) FY (1) FY(2)の値をそれぞれ求めなさい。 (3) Xの平均を求めなさい。 (4)Yの平均を求めなさい。 (5)Xの分散を求めなさい。 (6)Yの分散を求めなさい。(7) Z1 2X+3の平均を求めなさい。 (8) Z1の 分散を求めなさい。 (9) Z2=-3Y+2の平均を求めなさい。 (10) Z2の分散を求めなさい。 (1) f(x) C{ーポ+2才}O<水く2が密度関数となるような正規化定数Cの 値を求めなさい。 (2)(1)で求めた密度関数f(オ)を持つような確率関数×を考える。Xの分布関数を 求めなさい。 (3) Xの平均を求めなさい。 (4) Xの分散を求めなさい。 5 x^ ~N(50,102) であるとき、次の問いに答えなさい。 (1)P140×60)の値を求めなさい。 (2)Xの分布の第 四分位点を求めなさい。 ⑥大問3で定義した確率変数XとYに対して.2=2X-3Yと定義する。 このとき、次の問いに答えなさい。 (1)Zの平均を求めなさい。 (2)XとYは互いに独立であると仮定する。このとき、その分散を求めなさい。

回答募集中 回答数: 0
経営経済学 大学生・専門学校生・社会人

問題全部分かりません。解いていただきたいです。途中過程も記述していただきたいです

3 確率XとYを以下のように定義する。 1 W. P. 1/6 2 W. P. 16 -1 w. P. 1/5 = 3 W. P . 1/6 Y = 0 w.P. 112 4 5 w.P. 1/6 W. W. P 3/10 P 1/6 W P 1/6 (1)XとYの確率関数をそれぞれfx(水).fy(リ)とする。このとき、fx (1) fx(5) fy(0) fy(1).fr(2)の値をそれぞれ求めなさい。 (2)XとYの分布関数をそれぞれFx(21) Fy(y)とする。このとき、FX(0) FX (5) FY (0) FY (1) FY (2) の 値をそれぞれ求めなさい。 (3)Xの平均を求めなさい。 (4)Yの平均を求めなさい。 (5) Xの分散を求めなさい。 (6)Yの分散を求めなさい。(7) Z1=2X+3の平均を求めなさい。 (8) Z1の分散を求めなさい。 (9) Z2 (10) Z2の分散を求めなさい。 4 (1)f(水) = -3Y+2の平均を求めなさい。 C{ーポ+2才}O<水く2が密度関数となるような正規化定数Cの 値を求めなさい。 (2)(1)で求めた密度関数f(t)を持つような確率関数×を考える。Xの分布関数を 求めなさい。 (3) Xの平均を求めなさい。 (4) Xの分散を求めなさい。 5 X~N(50.102)であるとき、次の問いに答えなさい。 (1)P140×60)の値を求めなさい。 (2)Xの分布の第一四分位点を求めなさい。 ⑥大問3で定義した確率変数XとYに対し7.2=2X-3Yと定義する. このとき、次の問いに答えなさい。 (1)Zの平均を求めなさい。 (2)XとYは互いに独立であると仮定する。このとき、この分散を求めなさい。 °

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

確率統計の問題です。かなり難問で詳しく解説いただけると幸いです。

問5次のようなパズルのような問題がある. 問題を簡単にするために1年は365日とする (閏年は考えない). ある工場では人の工員を雇うことにする が,このうちの1人でも誕生日の人がいればその日は休みに, 1人も誕生日の人がいなければ働き、その日は 人数と同じn (単位) の利益を得るものとする。このとき,この工場の1年間の利益は働いた日数 xn にな る.例えばたまたま全員が同じ誕生日の場合は働いた日数=364 なので 364n の年間利益を得る. n人の工員をランダムに雇うとき, すなわち人それぞれの工員の誕生日は独立で一様分布に従うときこの年 間利益は確率変数になるが,その期待値を f(n) とする. この f(n) を最大にする n を求めよ. この問題は一見かなり難しいが以下の設問に沿って解答することにより f(n) を最大にする n とその時の f (n) の値を求めよ. (1) n 人の工員を雇うとき,確率変数 S を1人も誕生日の人がいない日数とするとき f(n) を S (やその期待 値, 分散など) を用いて表せ. (2) i=1,2,...,365を日にちを表すパラメータとする. 確率変数 X を次のように定める 1日に1人も誕生日の人がいなかった場合 Xi = 0日の誕生日の人がいた場合 このときP(X = 1) を求めよ. (3) (2) の設定で S を X を用いて表せ.また E[S] を求めよ. (4) 以上を用いて f(n) を具体的に表せ. (5) (4) で求めた f(n) より f(n+1)-f(n) を考えることで f (n) が最大になる n を求め, f(n) の最大値 (の 近似値)を与えよ.

回答募集中 回答数: 0
経営経済学 大学生・専門学校生・社会人

1つでもわかる方教えてください🥹🙏

問題 2.1 掛け金を宣言した後、確率 0.8で掛け金を受け取り、確率 0.2 で掛け金を支払うというギャンブルがあ る。 現在1万円を所持しているあるギャンブラーは、0万円以上1万円以下の中で, 掛け金をどれだけにしようか考え ている。なお,このギャンブラーのリスク下の選好は期待効用仮説に従い、所持金x 万円に対する効用はu(x)=logx で 表される (log は自然対数) と仮定する。 (1) 掛け金∈ [0,1] の下で,最終的な所持金を X とする。 X の確率分布を求めよ。 (2) 最終的な所持金 X の期待値 E[X] および期待効用 Eu (X)] を (変数の式として)求めよ。 (3) 以下の掛け金の場合において, E[X] と [u (X)] を (比較のため必要に応じて数値的近似値で)求め,これら5 つの掛け金の間で,ギャンブラーの選好順序がどのようになっているか答えよ。 (4) •r=0 (ギャンブルをしないこと) • r = 0.25 • r = 0.5 • r = 0.75 r=1 (ギャンブルに全額をつぎ込むこと) 確率変数X の期待値と期待効用を図で表現せよ。 《ヒント: 授業内容を参照すること。> =0.5のとき, (5) ギャンブラーが選ぶべき掛け金∈ [01] を求めよ。 《ヒント:110g(+1)= log(1-1)=1/11/

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

標本平均についてです。 写真の問題を見たときに、①0か1の2択であること②政党支持率は30%で一定であること③0か1の番号に振り分けることを繰り返すことの3つの条件が揃っていたので、二項分布だと思い、二項分布B(n,0.3)に従うと考えました。 そのため問1の期待値を0.3... 続きを読む

基本 例題164 標本平均の期待値,標準偏差 ある県において, 参議院議員選挙における有権者のA政党支持率は30%である という。この県の有権者の中から,無作為にη人を抽出するとき,k番目に抽出 された人が A 政党支持なら1, 不支持なら0の値を対応させる確率変数を Xんと する。 (1) 標本平均 X= X+X2+・・・・・+Xn について, 期待値E (X) を求めよ。 059 n | (2) 標本平均 X の標準偏差 (X) を 0.02以下にするためには, 抽出される標本 の大きさは、少なくとも何人以上必要であるか。 指針 (1) まず, 母平均 m を求める。 p.636 基本事項 4 4章 21 (2)まず,母標準偏差のを求める。そして, o(X)≦0.02 すなわち 1 小の自然数 n を求める。 0.02 を満たす最 n 解答 (1)母集団における変量は,A 政党支持なら1,不支持なら0 という2つの値をとる。 Xh 1 0 at P 0.3 0.7 1 よって, 母平均は m=1・0.3+0・0.7 = 0.3 (2)母標準偏差は ゆえに EX) =m=0.3 o=√(12・0.3+020.7) -m²=√0.3-0.09 =√0.21 統計的な推測 よって o(X) = √n 0.21 √n 28.18 √0.21 0.21 0.02 とすると,両辺を2乗して ≦0.0004 n n 小数を分数に直して考えて もよい。 (S) T 2100 0.21 0.21 ゆえに NZ = =525 ≦0.02 から 0.0004 4 √n この不等式を満たす最小の自然数n は n=525 √21 したがって、少なくとも525人以上必要である。 1-5 よって1/15 n 25 21

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

こちらの解答を教えて頂けませんか。

問題1 / 2 中の見えない袋に, 赤玉3個と白玉2個が入っている. この袋から2回続けて玉を取り出すという試行 を考える. ただし、 1回目に取り出した玉は袋に戻さないものとする. 取り出した玉の色が赤であったときに1, 白であったときに0となる確率変数を考え, 1回目の結果を X1, 2回目の結果をX2で表すものとする. このとき、以下の確率分布表を完成せよ。 また, 確率変数X」とX2が独立かどうか答えよ. ※表中への回答は半角数字で入力すること. 分数で答える場合は 2/3や4/5のように分子と分母を/で 区切ること. X10 (白) 1 (赤) P(X2=x2) 確率変数X」とX2は を入力すること. 問題2/2 X2 0 (白) X 10 (白) 1 (赤) 中の見えない袋に, 赤玉3個と白玉2個が入っている. この袋から2回続けて玉を取り出すという試行 を考える. ただし、 1回目に取り出した玉は袋に戻すものとする. 取り出した玉の色が赤であったときに1, 白であったときに0となる確率変数を考え, 1回目の結果を X1, 2回目の結果をX2で表すものとする. このとき、以下の確率分布表を完成せよ。 また, 確率変数X1とX2が独立かどうか答えよ. ※表中への回答は半角数字で入力すること. 分数で答える場合は2/3や4/5のように分子と分母を/で 区切ること. X2 10 (白) 1 (赤) P(X2=x2) 確率変数X」とX2は を入力すること. P(X1=X1) ← 「独立である」 「独立でない」のどちらか " 1 (赤) P(X1=x1) 「独立である」 「独立でない」のどちらか " 9点 9点

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

こちらの確率問題を教えて頂けませんか。。

問題1 / 2 中の見えない袋に, 赤玉3個と白玉2個が入っている. この袋から2回続けて玉を取り出すという試行 を考える. ただし、 1回目に取り出した玉は袋に戻さないものとする. 取り出した玉の色が赤であったときに1, 白であったときに0となる確率変数を考え, 1回目の結果を X1, 2回目の結果をX2で表すものとする. このとき、以下の確率分布表を完成せよ。 また, 確率変数X」とX2が独立かどうか答えよ. ※表中への回答は半角数字で入力すること. 分数で答える場合は 2/3や4/5のように分子と分母を/で 区切ること. X10 (白) 1 (赤) P(X2=x2) 確率変数X」とX2は を入力すること. 問題2/2 X2 0 (白) X 10 (白) 1 (赤) 中の見えない袋に, 赤玉3個と白玉2個が入っている. この袋から2回続けて玉を取り出すという試行 を考える. ただし、 1回目に取り出した玉は袋に戻すものとする. 取り出した玉の色が赤であったときに1, 白であったときに0となる確率変数を考え, 1回目の結果を X1, 2回目の結果をX2で表すものとする. このとき、以下の確率分布表を完成せよ。 また, 確率変数X1とX2が独立かどうか答えよ. ※表中への回答は半角数字で入力すること. 分数で答える場合は2/3や4/5のように分子と分母を/で 区切ること. X2 10 (白) 1 (赤) P(X2=x2) 確率変数X」とX2は を入力すること. P(X1=X1) ← 「独立である」 「独立でない」のどちらか " 1 (赤) P(X1=x1) 「独立である」 「独立でない」のどちらか " 9点 9点

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

統計学の確率密度関数の問題です。 2枚目の資料を参考にして解いていたのですが、難しかったのでどなたか詳しく教えていただくとありがたいです。

問3AさんとBさんが以下でルールが定められたゲームをする。 (ルール 1) 表に 1,裏に0と書かれた1枚のコインを, AさんとBさんがそれぞれ 2回ずつ投げる。 (ルール2) A さんの投げたコインに書かれた数を足し, その値を n とする。同様に Bさんの投げたコインに書かれた数の和も n とする。 (ルール3) -1,0,1と書かれたカードが何枚かあり、2つ束 aとbになっている。A さんは束 a から na枚のカードを引き, Bさんは束b からnB枚のカードを引く。 た だし, 2回引く場合は1枚目のカードをもとに戻してから再度引くこととする。 (補 足1も参照) (ルール4) (ルール3) におけるカードの数の積をそれぞれX,Y と書くことにする。 例えば、Aさんが2枚のカードを引き, その数が 1と1だとしたら, X = -1x1 = -1 である。 また,Bさんが1枚のカードを引き, その数が1だとしたら, Y=1とす る。(補足2も参照) そして,この数X, Y の大きい方を勝者とする。 (補足1) ルール3における束 a と束bにあるカードを引く確率はそれぞれ次で与え られているものとする。 束\数 -1 0 1 1/4 1/2 1/4 1/6 1/2 1/3 a b (補足2) A さんが1枚もカードを引かない場合, X = 0 と定義する。 同様に, B さん においてもカードを引かない場合は Y = 0 とする。 X, Y に対する同時確率密度関数をh(x,y) と書くとき, 次の問いに答えよ。 (1) n=2のときに X = 1 となる確率を求めよ。 (2) (1,-1) を求めよ。 (3) P(X = 1,Y≠0) を求めよ。 (4) AさんとBさんが引き分ける確率を求めよ。 (5) AさんがBさんに勝つ確率を求めよ。 (6) E[X] を求めよ。 (7) E[Y] を求めよ。 (8) X,Y の共分散 C' [X, Y] を求めよ。 (9) V[4X + 12Y ] を求めよ。

回答募集中 回答数: 0
1/9