学年

教科

質問の種類

数学 大学生・専門学校生・社会人

ある遺跡から動物の骨と思われる化石が見つかった。この化石の元素分析をした結果、炭素12と炭素 14の割合が(化石の炭素14の量)/(化石の炭素12の量)=8.5/(10^13)であることがわかった。この動物は何年に死んだものかを次の資料を参考に求めよ。 写真参照 こち... 続きを読む

11 ある遺跡から動物の骨と思われる化石が見つかった. この化石の元素分析をした結果,炭素12 と炭素 (化石の炭素14の量) 8.5 であることが分かった. この動物は何年に死んだものかを次 1013 14 の割合が ( 化石の炭素12の量) の資料を参考に求めよ. 資料 地球上の大気や物質中には、 通常の炭素原子 「炭素 12」 とは異なる 「炭素14」とよばれる炭素原子が存在 する. 炭素 14 は, 大気圏上層において宇宙線の作用により窒素から生成される.ところが,炭素14 は不安定 な放射性原子であり, ベータ線を放出して崩壊し、再び窒素にもどる. この様に, 大気中では,生成と崩壊の バランスがとれており、 自然界におけるこれら2種類の炭素原子の量の比は一定である. この量の比は, 大昔 (炭素14の量) 1.2 も今も変わらないと考えられ,現在の測定値は である. ところで、 炭素 14の崩壊は, = (炭素12の量) 1012 5730年で半分となる割合で起こり、この5730年を炭素14の半減期とよぶ. 大気中の炭素は二酸化炭素の 形で存在し, 植物による光合成や、 その植物を食べる動物の食物連鎖によって, 動植物の体内に取り込まれて (炭素14の量) であると考えられる. ここで, 動植物が死滅 いく. つまり、動植物の体内においても, 1.2 (炭素12の量) 1012 すると, 生体内に取り込まれていた炭素14は崩壊して減っていくが、 食物連鎖の対象外となったため、 新た に炭素14が供給されることはない.

解決済み 回答数: 1
資格 大学生・専門学校生・社会人

こちらの2問目についてなのですが、前受家賃の答えが1,490,000になりますがこの1,090,000はどこから来たのか分かりません💦 理解しようと自分なりに書き込みをしたり解説読んだりしましたがわかりません。 もし良ければ、やり方・計算方法教えてくださいよろしくお願いします。

第2問 20点 (1) 山梨株式会社 (決算年1回、3月31日) における次の取引にもとづいて、 答案用紙 示した受取家賃勘定と前受家賃勘定を記入しなさい。 ただし、解答にあたり次の点に注 意すること。 1. 取引は上から順に記入すること。 2. 日付欄は採点対象外とする。 3. 勘定科目および語句は下記の語群から選択し、 アークの記号で解答すること。 [語群] ア.前期繰越,次期繰越 ウ.受取工.前受才.前受家賃 カ受取家賃 キ.損益ク. 前払 ×7年4月1日 前期決算日に物件Aに対する今年度4月から7月までの前受家賃を計上してい ので、再振替仕訳を行った。 1か月分の家賃は¥100,000である。 ×7年8月1日 物件Aに対する向こう半年分の家賃 (8月から1月まで)が当座預金口座に振り 込まれた。 1か月分の家賃に変更はない。 ×7年9月1日 物件Bに対する向こう1年分の家賃が当座預金口座に振り込まれた。 この取引は 新規で、1か月分の家賃は¥130,000である。 x8年2月1日 物件Aに対する向こう半年分の家賃 (2月から7月まで) が当座預金口座に振り 込まれた。 今回から1か月分の家賃は¥110,000に値上げしている。 x8年3月31日 決算日を迎え、 前受家賃を計上した。 (2) 次の文章の①から④にあてはまる最も適切な語句を選択して記号で答えなさい。 (税金) 1. 貸倒引当金は受取手形や売掛金に対する ( 1 ) 勘定である。 ア.仕入.負債 ウ. 売上 エ. 振替 オ. 評価 2.買掛金元帳は、仕入先ごとの買掛金の増減を記録する(②)である。 ア.補助簿.起票 ウ. 仕入帳 エ. 主要簿 オ. 当座預金出納帳 3.建物の修繕によってその機能が向上し価値が増加した場合、(③) 勘定で処理する。 ア. 雑益. 修繕費 ウ. 貯蔵品 エ. 建物 才. 評価 4.3伝票制を採用している場合、入金伝票と出金伝票の他に、通常(4) 伝票が用いられる。 ア. 売上 .振替 ウ. 入金 エ.仕入 オ.出金

解決済み 回答数: 1
情報 大学生・専門学校生・社会人

大域変数、局所変数が理解できません。 この問題でそれらを使うと解説にあったのですが、読んでも理解できず、、 これらは何が違うのでしょうか? 以下は、どちらもaという箱に値をいれてるわけではないのでしょうか a←"B" 文字型:a←"A" 何が違うのか理解できないため教えて欲... 続きを読む

中から 実行する 実行 問4 次の記述中の 文法 に入れる正しい答えを、解答群の中から選べ 解説 p.142 手続 programA を呼び出したとき,出力は の順となる。 [プログラム] 1: 大域: 文字型: a← "A" 10001 11: OprogramA( ) 12: a ← "B" a を出力する 文字型: a ← "A" programB(a) 13: 14: 15: 16: 17: a を出力する programC ( ) Ɛ 0001 1002 21: OprogramB (文字型: b) 22: a を出力する 23: b を出力する 24: 文字型: ab 25: a を出力する S 001 T: 02 € 01 1 2 CHO (88TE) pied 1 第2章 予想問題2 31: OprogramC() 32: a を出力する (AFCOR) 33: a← "C" (Yenom) also in 34: a を出力する (12.01 02 001 002 0001] → gulay yanon Smunimunx糜爛龗 S 解答群 (x) not " 9 ア "A", "A", "B", "A", "A", "A", "A" ウ “A”, “A”, “B”, “A”, “A”, “C”, “A” オ "B", "B", "A", "A", キ "B", "B", "B", "B", "B", "C", "A" " "B", "A", "B" イ “A”, “A”, “B”, “A", "A", "A", "B" “A”, “A”, “B”, “B”, “A”, “C”, “B” カ “B", "B", "A", "A", "B", "C", "C" ク “B”, “B”, “B”, “B”, “B”, “C”, “B” Smunmun

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

この問題の30〜36を教えてください。 2枚目はv(t)とx(t)の答えです

II page-3 以下の文章の空欄に当てはまる数値または選択肢をマークせよ。 なお、番号には 「① +, ② ③ 値が0なのでどちらでもない」 のいずれかを選択して解答すること。 単位が明記されていない物 理量はすべてSI単位の適切な基本単位もしくは基本単位の組み合わせによる組立単位を伴っている ものとする。 軸上を運動する質量3kgの物体に, 速度でに依存する抵抗力F-6(vv) が作用している。 時 刻t=0において,この物体は0の位置にいて 204m/sの速さでz軸の正方向に運動していたと する。この物体の運動方程式として適切なものを以下の選択肢からすべて選ぶと 21 となる。 (選択肢) dax dv d²v ①3- = -6(V) ②3- = dt -6(√)335 = dt dt2 =-6(VD) ④3- =vo - 6(√)³ dv dt ⑤ 3 =vo-6(vv) ⑥ z=-vot- (vo)342 ⑦ dt この運動方程式は, 変数分離を用いると, dv 03/2 = 22 23 1 I= =vot- (viit2 dt. と変形でき, 両辺の積分を実行して、 初期条件を用いることで, 24 v(t) = 26 (1+25t) と求まる。 また, 時刻における物体の位置z (t)は, 27t x(t) = う 1 + 28t となる。これらの結果から,この物体は無限に時間が経過したときに= 29 の位置で止まること が分かる。 物体がx=0からある点=Xまで動く間に抵抗力Fがする仕事Wは, 抵抗力Fを物体の動き方に あわせてで積分することによって求まるから, W = = √³ Fo X Fdx, を計算すればよいが,この計算を実際に実行するためには, 積分変数を位置から時刻tに変換して 時刻t=0から物体が=Xに到達したときの時刻t=Tまでの間にFがする仕事を求める式に変形 するのが便利である。 dr = v (t) dtに注意しつつ, 置換積分を利用してこの計算を行うことで,Wを 3132 求めることができる。 例えば, t=0からt=1/2までの間にFがする仕事は [30] - である。 33 方, 物体がt=0から29で止まるまでにFがする仕事は, T∞の場合のWを考えればよく, その結果は W=343536となる。

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

解答のところでシャーペンで①②と書いているところについてそれぞれ質問したいです。 ①a>2のaは何を表していますか? anのことですか?? a>2がan>2のことを示しているのならばa1>2ということは理解できますが、間違っていれば教えて欲しいです。 ②なぜan-an-... 続きを読む

3 単調数列とコーシー列 25 SO ★★ 基本 例題 020 数列の発散と収束する数列の有界性 α>2として,数列{a}を次のように定める。 (本 a=a2-2, an+1=an2-2 この数列は正の無限大に発散することを示せ。 指針 数列{an} が単調に増加することを示す。 解答 収束する数列{a} は有界である。 2より a2 数列{a} が正の無限大に発散することを示すために, bn= 1 束することを示す。 このことは,次の定理により示される。 定理 収束数列の有界性 として, 数列{6} が 0 に an PD (称号の向きは変asaz 262 以下, 帰納的にすべてのnに対して an>2 単調減少 an-an-1=(an-12-2)-an-i= (an-i+1) (an-1- -1-20 よって, 数列 {az} は単調に増加する。 ancian. (+(-2) 271-2) bn=- とおくと, 数列{6} は単調に減少する。 bn 1 an また,すべてのnに対してb>0であるから,数列{bm}は下に有界である。 よって, 数列{bn} は収束するから,その極限値をβとする。 an>2より bn<- 2 21 an=12-2より1_1 (正の内に発話していること。 b2-2であるから bn-12-bn-2bn bn-12 B2=β-233 より β(β+1)(2β-1)=0 [n] 06/1/23より β+1>0, 2β-1<0 よってβ=0 [s) これはliman=∞ であることを示している。 n→∞ 参考 定理 収束数列の有界性の証明 lima=α とする。 このとき、ある番号Nが存在して, n≧Nであるすべてのnに対して N11 |an-α| <1 となる。 三角不等式により|an|-|a|≦|an-αであるから,n≧N であるすべてのnに対して|an|<|a|+1 が成り立つ。 ここで, M=max{|a|+1, |a|,|az|,......., | av-1|} とする。 このとき,Nの場合も、n<N の場合も |an | ≦M が成り立つ。 よって, 数列{an} は有界である。 注意 この逆は正しくない。つまり数列{az}が有界であっても、収束するとは限らない。例えば、 =(-1)" で定義される数列{an} は-1≦a≦1から有界であるが,振動するから収束しない。

解決済み 回答数: 1
1/19