学年

教科

質問の種類

数学 大学生・専門学校生・社会人

すみません、わかる方助けて欲しいです。

下記の問題について解答しなさい。 1.10 進数で表現された自然数を9で割ったときの余りを調べる方法として、各桁の数字 を全て加えた数の余りを調べればよいことが知られている。 例えば、 数 695973であるとき、 6+9+5+9+7+3=39 であり、 39 を9で割った余りは3であるので 6959739で割った余 りは3である。 この方法が成り立つのはなぜか、 講義中に説明した合同式の性質を用いて 一般的に説明しなさい (数695973 の場合についてのみ説明するのではありません)。 (Hint. 10 進数で表記された数の各桁は10のべき数の位である。 例えば、数123は1 × 102 + 2 × 101 + 3 の意味である。 また、 10=1 (mod9) に注意する) 2. 数 9798 と 4278 の最大公約数をユークリッドの互除法を用いて求めなさい。 途中の計 算式も示すこと。 3. 一次合同式31x=5 (mod247) を解きなさい。 4. 下記の連立一次合同式を解きなさい。 x=1(mod3) x=2(mod7) x=3 (mod11) 5. 法p = 11 であるとき、 加算と乗算の演算表 (教科書 p.18 の表 2.2のような表) を作成 しなさい。 また、 各非零元の乗法における逆元を示しなさい。 6. 法q=512における既約剰余類の要素の数を求めなさい。 7. 以下の値を求めなさい (Hint. オイラーの定理を利用する)。 13322 (mod 600)

回答募集中 回答数: 0
公務員試験 大学生・専門学校生・社会人

この問題の解答のA+B=C+Bが(1)のところでは14になっていて(2)の所では13でした。 何故こうなるのか分かりません。 Dが持ってる本数が10本に決まると解答に書いてあります。 なぜ10本になるのか分かりません。 教えてください。

[No.202] 正答 5 2034aで割ったときの共通の余り とする。このとき、 20 = am+y① 34an+y ② と表すことができる (mは20を4で割った では34で割った商)。 ②から①を 辺々引くと. €761 14 = a(n-m)!! となる。これはα (およびヵ-m) が14の約 数であることを意味する。 よっては1. 2. 7. 14 のいずれか。 ただし, 20 がαで割 り切れてはいけない ( 0 だと 「26をで 割った余りがそれ(r) より小さい」ことに反す る)ので,αとして考えられるのは7か14 α=7のとき: 20を7で割ると余りはy=6。 一方26を 7で割ると余りは5で、これはより小さ いのでOK。 14 のとき: 2014で割ると余り=6。 一方26を 14 で割ると余りは12で、 これはより大 きいので不適。 よって求める余りは5である。 【No.203】 正答 5 A~Eが持つ本数をそれぞれA~E (本) とする。 A~Eは順不同で2, 4, 6, 8, 10に対応 する。 いまCはEの2倍なので [E=2, C=4] 「E=4,C=8」 のいずれかである。 (1) E=2.C=4のとき: [ms.601 仮定よりE以外の4つの数はA+B= C+D を満たすが、 E以外の4つの数の 合計は4+6+8+10=28なので、 A+B=C +D=14 となり、これより D-10 となる。 (さら A. Bは順不同で68) (2) E=4,C=8のとき (1)と同様に考えると、E以外の4つの 数の合計は2+6 +8+10=26なので。 A+B=C +D=13 " 8 になるが、これではDが5になるので 不適。 よってDが持っている本数は10本に決 まる。 【No.204】 正答 1 ax bxc = 180 .... ① は3の倍数なのでa=3k とおける o は整数) bとcの最大公約数が2なので b=2B.c=2C (BとCは互いに素) とおける。これらを①に代入すると. (3k) ×2B×2C=180 ∴. k×B×C=15...... ② となる。 これよりk. B. C は 15の約数で あり、 よって 1. 3. 5. 15 のいずれか。 α(=3k) とb(=2B) の最小公倍数が18 (23) なのでもBも5の倍数ではな く.またkとBの少なくとも一方は3の倍 数である。 これに注意して ② をみると、② 68- 1×3×5 または 3×1 ×5 のどちらかになる。前者だと k=1. B=3 よりα=3.6=6となり、これらの最小公倍 数は6になるので不適。後者ならk=3. B =1よりa=9.6=2になり、確かに最小公 倍数は18である。 以上により a=3-3=9 b=2-1=2 c=2-5=10 に決まり、これらの和は9+2+10-21で

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

問題1.3教えて頂きたいです。

4 第1章 術の 問題1.3 0でない整数 a,6,cに対して, 次が成り立つことを示せ。 1.2 約数と倍数 (1)a|bかつ6|a → a=D±6. まず、約数と倍数の定義の復習から始めよう。 (2) a|bかつ6|c → a|c. (3) a|b → ac| bc. 定義1.1 整数a,6に対して、6 = acとなる整数cが存在するとき、 「aはbを割り切る」または 「bはaで割り切れる」 と言い。 a|bと表す。また、aをもの約数 (divisor) と呼び, bをaの 倍数(multiple)と呼ぶ. 一方, aが6を割り切らないときは, atbと表す。 定義1.4 a1,…, an を整数とする。 (1) a1, ,an のすべてを割り切る整数を a1, an の公約数 と呼ぶ、また,最大公約数 GCD(a1,… … , an) を次で定義 する。 * あるiに対してa; +0であるとき, a1,……Qn の公約 数の中で最大のものを GCD(a1,.….,an)とする。 cd 単に約数や倍数と言うときは負の整数も考えていることに注意す る。例えば,6の約数は±1, ±2, ±3, ±6の8個である.ESYe ●GCD(0, ,0) 3D0. 特に,整数 a,bに対して GCD(a,6) = 1 であるとき, a ともは互いに素であると言う。 命題1.2 (1)任意の整数aに対し, ±1 と±aはaの約数である。 (2) 1の約数は+1の二つのみである。 (3) 任意の整数は0の約数であり, 0の倍数は0のみである。 (2) a1, ,a, のすべてで割り切れる整数を a1, an の公倍 数と呼ぶ、また, 最小公倍数 LCM(aj, . ., an) を次で定 の 義する。 [証明明(1) e== +1 とおくと,e.ea=D aであるから, eと eaは *すべてのiに対して a; + 0であるとき, a1,, an の aの約数である。 る正の公倍数の中で最小のものを LCM(a1,.., an) とす 会 (2) aを1の約数とし, ac=1をみたす整数cを取れば、 る。 上い * あるiに対して a;=0であるとき, LCM(a1, .… , an)=0. 1= {ac| = |a||e| >_a|>1. 従って、a = 1, 即ち, a=±1 である。 (3) 任意の整数aに対してa-0=0であること(命題 8.3(1) を 参照)から(3) が従う。 (agad+ ( + + キ ロ 5) GCD はgreatest common divisor の略。 6) LCM は 1east common multiple の略。

未解決 回答数: 1
1/3