学年

教科

質問の種類

物理 大学生・専門学校生・社会人

1問目の答え合わせがしたいです。 教えて頂けたら幸いです!

【相対運動】 ただし,重力加速度をg (=9.81m/s²) とする. 問1 図1のような時計回りに角速度で回転している大円板の上に,さらに回転することができ る小円板がつけられている. 小円板はモーターのスイッチを入れることで回転させることができる. モーターのスイッチを入れて, 小円板を大円板に対して時計回りにの角速度で回転させた. 図の 位置に来たときの, P点の加速度 αx, ay を求めよ. 問2 対気速度 230km/h の小形飛行機が, 東へ機首を向けて飛ぶと北へ 15° 経路が傾き, 南へ機首を 向けると西へ 17°経路が傾く. 風の方向と風速を求めよ. 問3 西暦 23XX年、人類は巨大な円筒状のスペースコロニーを宇宙空間に建設し生活している. コ ロニーは一定の角速度で回転しており, 内壁部では地上と同じ重力加速度が発生している. ここで生 まれた太郎君は,自分の住んでいるコロニーの半径が知りたくなり,以下の実験を行った. 実験 : 床に目印を描き,そこから真上1mの高さからビー玉を落とす. 実験の結果, ビー玉はコリオリカのため、床の目印から1.60cm ずれて着地した. このコロニーの 半径を求めよ. 問4 問3の太郎君が, ボールを真上に投げたところ, ちょうど4秒後に地上に落ちてきた.このと き, ボールの落下地点はコリオリ力により、 投げた場所とずれていた. 何m ずれているか求めよ. ただし, コロニーの半径はボールを投げ上げた高さに比べて十分に大きく, 風や空気抵抗などの影響 はないものとする. 問5 図2のような半径上に溝を掘った円板がある. いま, 時刻 0おいて,この円板の中心から外側 に向かって, ある物体が溝の上を一定の速度Vで移動し始め,また, 円板も止まった状態から一定 の角加速度αで回転し始めたとき, この物体の加速度 ar, aeを時間の関数として求めよ. 問6 図3のように半径3000mのカーブを時速270km/h の一定速度で走っている列車がある. この 列車の座席に座っているA君が, 幅 1m のテーブルを出して, その上に小球を置いたところ, 静かに 転がり始めた.このとき, t秒後の方向および, 方向の速度をtの関数として求めよ. 図 1 図 2 3000m A君 _270km/h 1 図 3 点O 進行方向 1m A君 テーブル

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

力学の問題です。回答だけでもいいので教えていただきたいです!!

質量mの物体を水平面と0 (ただし, 0 0 < ™/2) の角をなす方向 に速さで投げ上げた. この物体の運動を調べるために, 水平方向で 物体が進む向きを を設定する. このとき, 時刻における物体の位置と速度をそれぞれ ((ty(t)), (x(t), ey(t)) で表すことにして, 時刻t=0における物体の位 置は (x(0),g(0)) = (0, 0) であるとする. また, 空気抵抗は無視できてこ の物体に働く力は重力 mg =-mge のみであるとして, 以下の問いに答 えよ. (1) 運動の様子を図示せよ. 物体に働く力も記入すること. (2) 方向と方向それぞれの運動方程式を立てよ. (3) 速度の成分v(t) とy成分y(t) を求めよ. (4) 位置の成分ェ(t) とり成分y(t) を求めよ. (5) この物体が最高点に到達したときの水平面からの高さを求めよ. 解答群 (1) (a) (c) (b) 0, mg (2) (a) mgsin0, mg cos0 鉛直上向きを+y方向とする座標系 方向とし, dvx dt mg cose mg sin 0 dvy (c)m =mgsino, m=mg cos0 dt (5) (a) (b) .mg (c) (d) X =-mg (b) dvr dvy (d) m- = 0, m- dt dt (3) (a) vェ(t) = vosin0, vy(t)=-gt + vo cos 0 (b) x(t) = vot cos0, y(t)= vm sin (20) g sin A cost 2g sin20 2g vcos²0 2g (d) (b) ux(t) = up cos0, vy(t)=-gt+vo sin 0 0 (c) ux(t) = gtsin0, vy(t) = - gt cos0 + vp sin 0 (d) ux(t) = gt cos0, vy(t) =-gtsin0 + vp cost y (4) (a) x(t) = vot sin0, y(t) = -12gf2 + vot cost y(t) == /2gt² + 0 (c) x(t)=1/2gt-sino, y(t) = -12gt-cos0 + vot sin0 1 (d) x(t) = ½gt² cos0, y(t) = −gt² sin + vot cos + vot sin 0 img sino mg mg cos e x x

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

物理基礎の運動エネルギーなどの範囲です。 高校で物理を履修しておらず、何が何か全然わかりません。どなたか教えていただきたいです。

2. 重力下(重力加速度をg とする)で、質量mの物体を地面から高さんの場所から静 かに落とした、この時、地面から高さ1(0≤l≤ん) の時の物体の速度を、以下 のように考えて求めた。 空欄に当てはまるものを答えなさい (10点) (選択肢から選 (必要に応じて、自分で問題のイメージ図を書いてみることをおすすめ) (a)鉛直下向きを正とする。 今、物体には保存力である重力しか働いていないため、 力学的エネルギー保存則が成り立つ。つまり、地面から高さがx (0≤x≤h) であ ● 運動エネノ ダーを K (z)、ポテンシャルエネルギーをU (2) とす ると、以下の式が成り立つ。 K(x)+U(z)=(一定) (1) 今、地面から高さの時の速度をv(z)とする。 ポテンシャルエネルギーの基 準を地面とすると、上の式は K(x) + U(x)= = と求まる。 1 5m イ+mg ウ=(一定) ア と書ける。 (b) 今、高さと、その地点での速度v(x) が判明している地点は、高さんの点で ある。初期条件より、この点ではv(h)=アである。これを式 (2) に代入す ることにより、式中の(一定) の値、 つまり物体の持つ力学的エネルギーは以 下のように K(x) + U(x) = K (h) + U(h) = 1 と求まる。 (c) (2) および (3) を合わせることにより、高さでの速度v(x) が v(x) = 7 (2) 2 (3) (4)

回答募集中 回答数: 0
1/3