学年

教科

質問の種類

数学 大学生・専門学校生・社会人

至急🚨 帝京大学2022年の過去問の解説お願いしたいです🙇 どなたか数学が得意な方解説お願いします🙇

数学(総合) 経済・法・文・外国語・教育・医療技術・福岡医療技術学部 〔1〕次の にあてはまる数を求め, 解答のみを解答欄に記入しなさい。 ただし, 解答に根号が含まれる場合は根号の中の自然数が最小となる形とし,分母は有理化する こと。 また、解答が分数となる場合は既約分数で答えること。 (1) 整式(x+1)(x+3)(x-3)(x-9) + 16x2を因数分解すると (x2- ア イ となる。 x- (2) αを6-22 をこえない最大の整数とし, b=6-2√2-αとするとき 1 62 + +2= 62 ウ である。 (3) 集合A={9, a, a-3},B={1, 4, 26 + 1,62} について, ACBであり, a bの値がともに負であるとき, a = I b = オ である。 〔2〕次の にあてはまる数を求め, 解答のみを解答欄に記入しなさい。 ただし, 解答に根号が含まれる場合は根号の中の自然数が最小となる形とし, 分母は有理化する こと。また、 解答が分数となる場合は既約分数で答えること。 (1)a,bを定数とする。 放物線y=5x²ax+a+bの頂点が点 (2, 1) であるとき, b= であり、この放物線をx軸方向に3,y軸方向に1だけ平行移動し ウ である。 た放物線の方程式はy=5x2 + ア イ x+ (2) 2次不等式xx-2<0 を満たすすべてのが 2次不等式(x-a)(x-a-5) > 0 を満たすとき,定数aの値の範囲は設する際 as I オ Saである。 〔3〕次の にあてはまる数を求め、 解答のみを解答欄に記入しなさい。 ただし, 解答に根号が含まれる場合は根号の中の自然数が最小となる形とし, 分母は有理化する こと。 また, 解答が分数となる場合は既約分数で答えること。 円に内接する四角形 ABCD において, AB=5,BC = 3,CD=2,∠ABC=60° 2つの対角線 AC と BD の交点をEとする。 このとき, (1) AD= (2) BE ED 〔4〕次の (3) M = 0 1 p ア 3 BD = 10453 (3-2 PH エ であり, BE = E 4 5 イ 年 L 1 (1) 下の図があるクラスで行ったテストについての, 37人の得点の箱ひげ図である 四分位偏差は 四分位範囲は とき, このデータの範囲は イ ウ である。 四角形 ABCDの面積は にあてはまる数を求め, 解答のみを解答欄に記入しなさい。 ア オ 9 である。 a, b, 83, 9, 52, 79. 38, 41. 63. 35. である。 . 19 20 (点) (2) 次の10個からなるデータについて 中央値が48, 第1四分位数が38, 第3四分位 .b= エ オ である。 ただし, a < bとす 数が77であるとき,a=

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

すみません統計全くわかりません 解答とわかりやすい解説どうかお願いします🤲

統計 まとめ問題 ある地域の無数に居る学生を対象とした100点満点の試験において、 数学と理科の点数はそれぞ れおよそ正規母集団N (μa, z) N (μb, of) を成すという。 数学試験の事情に詳しい人に話を伺っ たところ、 数学の得点の母平均 μa の値については教えてくれなかったが、 母分散は2 で 250.0 あるという。理科の得点が成す正規母集団の母平均 μと母分散 of については全く分からない。 そこでこれらの値を推定するべくこの地域から10人の学生を無作為に選び、 その学生に順に ①,②,... ⑩ と番号を付けて数学と理科の試験を実施することにした。 試験実施前の段階で、 学 生 水の取る数学、理科の得点をそれぞれ Xk, Yk と置いておく (この段階ではまだXk, Yk の値は分か らないので、これらは確率変数と考える)。 このとき (1) 確率変数 X10 - Ha √2/10 10 (2) 確率変数X は f(x) = である。また、 μa に対する 90%信頼区間を、 この分布の両側10% 点 Z0.05 と を用いて 表すと (Yi - Y10)² 分布に従う。この分布の確率密度関数 f(z) は であり、ゆえにの ZER は 品 i=1 頼区間を、この分布の左側5%点w0.95 と右側 5%点 wo.05 を用いて表すと X1 X2 31 2 分布に従う。このときに対する90%信 実際に試験を実施したところ、 学生の数学と理科の得点をそれぞれ Tk, ykと表す (つまりこれ らはXk, Yk の実現値) とき 2次元データ (z)=( X10 Y10 1 となる。 を順に 学生 (2) ③ 4 5 (8) (9) 10 数学の得点 56 60 62 24 70 63 44 77 36 60 理科の得点 76 70 60 45 82 51 39 98 60 63 となる。 = のように得た(例えば 26 (学生⑥の数学の得点)=63であり、 36 (学生 ⑥の理科の得点)=51 という こと)。 (3) 上の1次元データ = (x1, 2, 10) を小さい順に並べると

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

全部わかりません。 助けてください😭

右のデータは, 1パックに入っていた10個の卵の重さを計測し, 小数第1位を四捨五入したものである。このデータについて,次のも のを求めよ。 (1) 平均値と中央値 考え方 1 63 60 56 59 63 64 58 60 59 58 (単位:g) e) トン の( 中央値は, データを大きさの順に並べたときに中央にくる値。データの個数が偶数の 肉) 場合は,中央の2つの値の平均をとる。 でよ さでのモ モ) (2) 四分位偏差 考え方 データを大きさの順に並べたとき,4等分する値を小さいほうから, 第1四分位数,第 2四分位数(中央値), 第3四分位数とよび, (第3四分位数)- (第1四分位数) を四分位範 囲という。四分位偏差とは, この四分位範囲の2分の1のこと。 (3) 標準偏差 (根号がついたままでよい) 回 合 Hoof 合 効 ケま 旨ケ対学小 右の表は,ある神社の境内にある杉のうち, 樹齢のわ かっている5本について, 樹齢工年と地上1mにおける幹 の直径y cm を調べたものである。次の問いに答えよ。 (1) エ, yのデータの組を表す点を右の ry平面上にとり, この5本の杉の樹齢と直径の間にはどのような関係があ るか答えよ。 2 樹木番号 の 2 3 r(年) 42 29 60 39 55 y (cm) 20 16 32 21 36 プレートは 合場 160食 40 (2) 変量z, yのn個の組(zi, y), …, (In, Y)がある 30 とき, エ, yの平均をそれぞれz, y として 20 今度× 10 Szy n (zュ-) ( …+(zn-エ) (4-) 大ゲ光 合 t 0 10 20 30 40 50 60 エ を2, yの共分散という。また, エ, yの標準偏差をそれ ぞれ Sz, Sy とするとき 手国S の女ゆはで送へ (yーy)(z-ェ)(y-y) Szy =ー SzX Sy リ-y I 2(エーエ) - Slool で計算される値rを, zとyの相関係数とい う。右の表を埋めて, 5本の杉の樹齢と直径 の相関係数を求めよ (小数第2位を四捨五 の 42 20 代ン出く の 29 16 (3 60 32 39 21 るるっ 36 55 入して,小数第1位ま ので)。計算には電卓を 実使用してよい。 0 0 計| 225 125 =」のリニ ラ ー 15

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

データの分析です。 (3)がわかりません。教えてください!

あるクラスの生徒 40人について、100点満点のテ ストを行った。右の図は、テストの得点のヒストグ ラムである。 (1) 次のア]に当てはまるものを,下の0~ ●のうちから1つ選べ。 この40人のデータの第3四分位数が含まれる階 (人) 10 20 0 0 0 0 0 0 1(点) 級は、ア」である。 0 10点以上20点未満 0 40点以上50点未満 0 70 点以上80点未満 (2) 次のイコ ウ]に当てはまるものを、 右の図の0~0のうちから1つずつ選べ。ただし、 解答の順序は問わない。 このデータを箱ひげ図にまとめたとき,ヒストグ ラムと矛盾するものは、 ロウである。 0 20 点以上30点未満 0 50 点以上60点未満 0 80 点以上90 点未満 30 点以上40点未満 60 点以上70点未満 ● 90 点以上100点未満 0 0 10 20 30 40 50 60 0 0 (点) (3) 後日,このクラスで再試験を行ったところ,再 試験の得点の箱ひげ図は右の図のようになった。 次のa~cのうち、最初のテストの得点から再試 験の得点への変化の分析結果として、箱ひげ図と矛盾するものは、エ]である。 |]に当てはまるものを、次の0~0のうちから1つ選べ。 a どの生徒の得点も上がった。 6 10 20 0 0 50 0 (点) b 最初のテストの特点で下位-に入るすべての生徒の得点が上がった。 c 最初のテストの得点で下位-に入るすべての生徒の得点が下がった。 0 aのみ 0 bのみ 0 cのみ 0 aとb 0 aとc

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

一次関数応用です! 第4問の4がわかりません!解説お願いします🙇

2 d 1日)たかしさんとけんとさんは、学校から公園まで一直線の道をランニングすることにしまし 第 に。午前9時にたかしさんが先に学校を出発し、 その6分後にけんとさんも学校を出発しました。 たかしさんは,途中までは一定の速さでランニングし続けていましたが, ある地点からはランニング の,それまでの半分の速さで公園まで歩き続けました。けんとさんは, ランニングの途中に1回だ リトち止まって休憩し, 再び、休憩する前と同じ速さで公園までランニングし続けました。午前9時45 分に2人は同時に公園に到着しました。 14 トの図は,たかしさんが学校を出発してからx分後の, 2人の間の距離をymとして, xとyの関係 をグラフに表したものです。 あとの1~4の問いに答えなさい。 y (m) 096 98 23 13 20 23 45 x (分) 0 9 98 けんとさんは, 学校を出発してから公園に到着するまでに, 何分間ランニングをしていましたか。 学校から公園までの距離は何mですか。 3 けんとさんが休憩しているときのyをxの式で表しなさい。 2人の間の距離が1000mとなるときが全部で2回あります。2回目は1回目から何分後ですか。

回答募集中 回答数: 0