学年

教科

質問の種類

TOEIC・英語 大学生・専門学校生・社会人

分詞 分詞の理屈はわかっているのですが 19に関しては、エンジンはかけられる ものと判断してしまい 受動的な意味なんだと思ってしまいingのイメージがわきません。 20に関しては、目は閉じる ものと判断してしまい 能動的な意味なんだと思ってしまい edのイメージがわき... 続きを読む

| 19 Some people leave their cars with the engines 19 shopping for a few minutes. ① run ② to run ran 20 when they go running [英検準2級] □20 According to the newspaper, the boy was knocked unconscious ande ATE lay on his back with ① his closed eyes ③ closing his eyes ② having his eyes closed ④ his eyes closed 〔明星大 (理工物化)〕 119 数分間買い物に行くとき, エンジンをかけっぱなしで車を離れる人がいる。 19④ running 付帯状況の with の構文では, with の後ろの名詞を基準に能動か受動かを見て, 後ろに続くのが現在分詞か過去分詞かを決めます。 ここでは「エンジンがかかっ ている」という能動の関係を見抜いて, ④running を選ぶこと。 □20 その新聞によると, その少年は強く打たれて意識不明になり、 目を閉じて 仰向けに横たわった。 [20 ④ his eyes closed 付帯状況の with の後ろには,「名詞+分詞」の形が続くことができます。 5 分詞が現在分詞か過去分詞かを決めるときは, 名詞を基準にして「する」 のか 「さ 「れる」のかを考えてみるとよいでしょう。 ここでは 「彼の目が閉じられている」 という受動的な関係があります。 ③ closing his eyes のように, 「with Ving」 の形 になることはありません。 分詞

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

マーカーと矢印のところがわかりません、教えてください http://www.yam-web.net/science-note/AM.pdf

導出2 http://hep1.c.u-tokyo.ac.jp/-kazama/QFT/qh4slide.pdf 「量子力学/場の量子論 /Noether の定理」参照 SL Lagrange 微分: を次のように定義する。 SL Te (6,4) OL 8p SL OL 三 p OL 場の運動方程式: =0 次の無限小変換を考える。 x→x'=x+4x (x→x=x"+ Ax") p(x) → p(x) = ¢(x) + 4¢(x) 4は total change(¢(x) からの差分)を表す。 また、中(x)は、(x)= ¢(x) + Ax" 6,¢(x) でもある。 中(x) は場を少しだけ変形したもの、次の項は位置を少しだけずらしたときの差分。つまり、場の形の微小変 化による差分+位置の微小ずらしによる差分= total change となる。 Lie 変分:同一座標点での場の形の変化を Lie 変分と呼びるで表す。 るp(x) = ¢(x) - (x) 上の中(x)に関する2つの式より、 Sp(x) = ¢(x) - (x) = 4¢(x) - Ax" o,¢(x) すなわち total change 4¢(x) は、A¢(x) = ō¢(x) + Ax" o,¢(x) となる。 (x地点では、ふ(x)= ¢(x') - ¢(x') ) 作用S=Jd'xL(¢x), a,4(x))の変化を求める。 S'=[dx L(¢), 6.f(ax)) まず場の変化をx'での Lie 変分で書き表す。すなわちゅ(x) = ¢(x) + 5p(x) 等々。 すると、微小量の一次のオーダーまでとって S'=[dxL(ec). 6,4)+Jd'x( + L -6,54) 第1項をxでの表式に書き換えると、 Ja'r La) =[dxL) d'x=dx =Jdx(L) + Ax" 6,1 ) ヤコビアンは次のように計算される。行列 MをM,= 0, Ax° と定義すると、 TOPページ(総合目次)へ 全文検索は Ctrl+F 11 = detl1 +MI = expTrln(1 + M) ~expTrM~ 1+ 6Ax" OL S'=Jd'x(1+ 0Ax°)(L+ Ax" 0,L + 6,6) ("e)e - 5p T9 この一次近似は、 SL L L -Sp+ 6(- SL 三 6¢ OL =[dx{L+6.(ax" L) + - るみ)} a(6,4) 0.4) =Jdx{L+ + T2 p+ Ax" L)} (0,p) 8p S-S=[dx +s T9 るp+ Ax" L)} - Ja'xL=S 8p (e)e、 =Jdx{e"+ SL ここでは、デ= OL - み+ Ax" L 6,4) SL ゅ= 0 8p 8L L T9 場の運動方程式 8p =0より、 " a(6,4) L L るp+ Ax" Lとしたが、j"= - a(0,4) - 5ゅ - Ax" Lとおいてもよい。) 6j"= 0 (j"=

解決済み 回答数: 1
1/2