学年

教科

質問の種類

物理 大学生・専門学校生・社会人

この問題の解答を作っていただけませんか。院試の勉強に役立てるつもりです。

問題1 粒子の質量 m、ばね定数K の1次元調和振動子を考える。波動関数 y=N.exp( 26 ) yo N=exp(-1211 ) exp(61) - 2017(6) 00: = non! を考える。ここで、yは1次元調和振動子の基底状態、*およびらはフォノンの生成および消滅演 算子 z は複素定数である。 (4) (5) の解答はm、 K を用いずに、講義でも用いた実定数 1 a = V h = = ħ² (mk) = ½ 4 mo z、および、hを用いて表せ。 (1)は規格化されたエネルギー固有関数y=(6) を用いて 8 1 y = N₂Σ n=0 Vn! と表すことができることを示せ。 (2)yが演算子の固有関数であることを示せ。 さらに固有値を求めよ。 (3)が規格化されていることを示せ。 (4)yによる位置演算子の期待値x、運動量演算子のx 成分 px の期待値を求めよ。 (5)位置のゆらぎ4x=√<yl(i-xy)、および運動量のx成分のゆらぎ4p=<yl(p.-P)^v)を を求めよ。 この結果を用いて、不確定性関係が満たされていることを確認せよ。 (6) 初期条件(0)=yの場合の時間に依存したシュレディンガー方程式の時刻 t での解をy(t) と 表す。B(t)=(y(t) (1) とする。 〈4 (1) 6y(t)) をB(t) を用いて表せ。 (7) B(t)の満たす微分方程式を導出し、その一般解を求めよ。 (8)時刻tでの解y(t)による、位置、運動量のx成分の期待値を求めよ。初期状態のzは z=rexp(i0)、 ここでおよび0は実数である、で与えられるとし、期待値を、a、r、 0、 w、 t、および、hを用 いて表せ。

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

なぜ積分したらこの形になるんですか?これだと、マイナスで括れば元の形に戻ると思うんですが、、青の部分はこうなるのではないのですか??違いがわからないです

150 絶対値記号のついた定積分の代謝会 次の定積分を求めよ. (1) S√ √x-3dx (2) Clsin2xldx 3定積分 329 **** 考え方 絶対値記号をはずす. そのとき, xの値の範囲により、積分区間を分ける. 絶対値記 号をはずすポイントは、記号の中の式を0以下と0以上で場合分けすることである. √x+3(x3)←x-3≦0 (0以下) (1)√x-3 √x-3 (x≧3) ←x-30 (0以上) Solx-3ldx=S-x+3dx+x-3dx であるから, (2)0≦x≦ より 0≦2x≦2 sin 2x TC 10≦x≦ ← 0≤2x≤ したがって, |sin2x|= 200 (0以上) sin 2x (SIS) π 2 ← 2 2 (0以下) 「解答 (1) (2) つまり、Solsin2x|dx= sinxdx+S(sin2x)dxS'=S+S Svlx-3ldx=S-x+3dx+Svx-3dx =[2/3(x+33 + [1/(x-3)2 3 + ·32 376 ||-3|= x+3(x≦3) lx-3 (x≥3) YA y=√x-31 √3 y=vx3 第5章 0 3 y=v-x+3 |sin2x|= sin2x (0≤x≤7) -sin 2x(SIS) y=|sin2x| =4√3 π Sisin2x|dx= sin2xdx+S =S sin2xdx + S (- sin2x)dx Jogt =[12/cos2x]+[/2/cos == =-1/12 (1-1)+1/2(11) 2x ya 1=2 Focus 積分区間を分けて、絶対値記号をはずせ (記号の中の式を0以下と0以上で場合分け) a) 0 π TX 2 y=sin2xy=-sin 2x グラフはx軸で折り返した グラフを利用しよう.

未解決 回答数: 1
化学 大学生・専門学校生・社会人

全くわかりません 誰か教えてください。

点]課題 3 圧力300kPaの酸素が入っている容積500mLの容器に, 圧力400kPaの窒素250mL を加えたとき,容器内の混合気体の圧力は何kPaになりますか。 ただし, 気体の [B10-02] 温度は変化しないものとします。 (計算式) [10点] 課題 50℃の氷90.0gを100℃の水蒸気にするためには,何kJの熱量を必要としますか。 ただし, 水1gを1℃上昇させるときに必要な熱量は4.18J 水の融解熱は6.0kJ/mol, 気化熱蒸発熱) は40.7kJ/mol, 原子量はH=1.0, O=16.0とします。 (計算式) C 【 有効数字3桁】 (混合気体の圧力は) 450kPa 500kPa 550kPa 600kPa 課題 4 次の濃度に関する問題に答えなさい。 (1) 塩化ナトリウムの20%水溶液をつくるとき 水100gに対して必要な塩化ナトリ ウムは何gですか。 (計算式) x =0.2 100+x 25 100+25-0.2 (必要な熱量は) 204kJ 241kJ 271kJ 300kJ (塩化ナトリウムの質量は) 10g 20g /25g 40g (2) 硫酸の96.0%水溶液のモル濃度は何mol/Lですか。 ただし, 溶液の密度は 1.84g/mLとします。 【有効数字3桁】 (計算式) [20点] 課題 6 次の反応が平衡状態にあるとき, 条件を変えた場合どのように平衡が移動す るでしょうか。 下の問いの空欄に記号 (①~⑤) を記入して答えなさい。 1302 203 - 285kJ ② C (固体) + H2O (気体)=CO+Hz 130kJ ③ N2 +3H2= 2NH3 + 92kJ ④ I2 (気体)+H2 = 2HI + 11kJ ⑤ N2O42NO2-63kJ 硫酸のモル濃度は) 17.6mol/L 18.0mol/L 18.4mol/L 18.8mol/L (1) 温度を高くすると、 平衡が右に移動する反応 ( )( )( (2) 温度を高くすると, 平衡が左に移動する反応 ( (3) 圧力を高くすると, 平衡が右に移動する反応( (4) 圧力を高くすると, 平衡が左に移動する反応 ( (5) 圧力の変化には無関係な反応 )( )( ) ( )

回答募集中 回答数: 0
1/24