学年

教科

質問の種類

数学 大学生・専門学校生・社会人

4(4)(5) と 5 のリミットの計算ができません (4)はこれ以降どのようにすればいいかわからず、(5)と5の計算については全く分かりません どなたか教えてください

数学総合演習 (05/14, 解析) 解答は解答用紙1枚に全て記入すること. 裏面を使っても良い。 ・解答は 解の導出過程 (途中計算) も含めて, ていねいに記述すること. ・日付, 科目, 担当教官,氏名, 学籍番号, クラスを忘れずに記入すること. ※ 科目 数学総合演習1, 担当教官 美暁 解答用紙の提出について (ジャン シャオホン) 1. 演習レポート形式: 複数ページの解答用紙の写真を1つのPDFファイルにまとめて解答用紙に氏名、学籍番号、クラ スを忘れずに記入すること)。 ファイル上 (5MB)。 2 演習レポートのファイル名: "学籍番号演習期 pdf" としていただきますようお願いいたします。 (例: 学生 b1008300 について。 4月21日の演習の場合、レポートは "b1008300-0421.pdf になります。) 3.課題レポートの提出先: 以下の場所に提出してください。 [HOPE]-[数学総合演習11-EFGH]-数学総合演習1-解析 (1-EFGHクラス) (05/14) 提出締め切り:5月15日 (木) 午後6:30 まで。 解答の公開 5月15日 (木) からHOPEで公開されます。 1. (x+2)* を計算しなさい。 2. 次の一般項で与えられる数列のうち、 収束するものを選びなさい. an =2n+1,b=,c="ds=cosl n 3. 数列a.= (-)" が収束する範囲を求めよ。 また、収束するときの 72 極限値 lim (14) を求めよ. +80] 4. つぎの極限を調べよ。 4+8+... +4 n→∞ 1+3+…+ (2n-1) (1) lim n! (3) lim (5) lim V3n+1 72100 (2) lim n→∞0 (4) lim (1+1/+1/+ + n→∞ (6) lim noon- n 5.p>0.0>>とする。 4.+1=20 (1+pan)をみたす数列を考える。 1 + 2pan+s = (1+2pa) を示し, lim == 上を導け、 11-00 2p

未解決 回答数: 1
公務員試験 大学生・専門学校生・社会人

この問題の解説にある、 AはBの出発15分前に出発し、BはCの出発7分後に出発したことから、AはCの出発8分前に出発したことがわかる。 この文章なんですけど、どういう風に考えたらAはCの出発8分前に出発したことが分かるんですか? どれだけ解説を読んでも、頭がこんがら... 続きを読む

SECTI 第1章 ●ECTION 数的推理 11 0 速さ 実践問題 74 基本レベル 頻出度 地上★★★ 国家一般職★ 国税・財務・労基★ 国家総合職 ★★ 東京都 ★ 特別区★★★ 国家総合職(教養区分)★ 裁判所職員★★ 問 A, B, Cの3人が同じ場所から同じ道を通って同じ目的地へ徒歩で向かった。 Aは, Bの出発15分前に出発し, Cの到着4分後に到着した。Bは、Cの出発 7分後に出発し, Aの到着11分後に到着した。 A, B, Cはそれぞれ一定の速 さで移動し,Bは分速60m,Cは分速70mだったとすると、Aの速さは か。 1: 分速48m 2:分速50m 3: 分速52m 4: 分速54m 5: 分速56m (国家一般職2024) とこは初めてずれった。 それぞれ1回返した後、甲と乙が再び 通ってから63秒であった。 いのはどれか。 図(地上2010) 実践 ◆問題74 の解説 PUT チェック 1回目 2回目3回目 <速さ > AはBの出発15分前に出発し, BはCの出発 7分後に出発したことから,AはC の出発 8分前に出発したことがわかる。また, BはAの到着11分後に到着したこと およびAはCの到着4分後に到着したことから,Aが移動に要した時間をα (分) と すると、中 Bの所要時間: α-15+11=α - 4 ( 分) Cの所要時間: α- 8-4 α-12 (分) 30 第1章 数的推理 ここで,同じ距離を移動する場合, 所要時間の比は速さの逆比に一致することか ら,BとCの所要時間と速さに着目して,次の式を得る。 (a-4): (a-12) = 7:6 としく、さらにこのα=60(分) 次に,Aの速さをx (m/分) として, AとBの所要時間と速さに着目すると、 a: (a-4)=60: x 60:56=60x CHROMA PASOS を満たす。 x=56(m/分) となり,Aの速さは分速56mであることがわかる。 よって, 正解は肢5である。 となりを代入 ()+()=x+x 40x-400 (e/m)= たすため、 よって、正解は 10(分)と 2である。 (コメント) 本間でわれているの 8:1 01:S

未解決 回答数: 2
資格 大学生・専門学校生・社会人

この問題の2行目sbというのはなんでしょうか。 文字型sという箱の中にABCDという値が入っていて、 StringBuffer:sb←stringBuffer(s) sbという箱の中をABCDで初期化するという意味かと思ったのですが メンバ変数とかメソッドとかを説明してる枠... 続きを読む

ワグラム中の 問 11 次の記述中の [7] オブジェクト指向 頭の位置は1である。 (4)として Catsb 解説 p. 158 クラス StringBuffer は文字列処理を行うクラスである。 クラス StringBuffer a 図に示す。 に入れる正しい答えを, 解答群の中から選べ。 ここで、文字の先 明を ある。 関数 stringProcessing を stringProcessing ("ABCD") として呼び出すと, 戻り値はで ()tignod 型 説明 メンバ変数 文字列型 格納する文字列。 str 説明 コンストラクタ StringBuffer (文字列型: str) (Linersqlstsb. メソッド 戻り値 引数 strでメンバ変数 str を初期化する。 説明 append(文字列型: str) StringBuffer メンバ変数 str の末尾に引数 str を追加し,イ ンスタンスへの参照を返す。 delete(整数型: start, StringBuffer メンバ変数 str の start 番目からend - 1番 目まで削除し, インスタンスへの参照を返す。 メンバ変数 str を返す。 整数型: end) toString() 文字列型 TIDNA replace (整数型: start, StringBuffer メンバ変数 str の start番目から end 整数型 end, 文字列型: str) lastIndexOf( 整数型 文字列型: str) 目の部分文字列を引数 str に置換し, インス inersqtiqson タンスへの参照を返す。 tibne メンバ変数 str を検索し, 引数 strが最後に出 現する、先頭からの文字位置を返す。見つか らない場合は-1を返す。 図 クラス StringBuffer の説明 ISASE [プログラム] 1: ○整数型: stringProcessing (文字列型:s) 2: StringBuffer: sb ← StringBuffer(s) 3: sb ←sb.append("ABCD").delete(4, 6) 4: sb ← sb.append(sb.delete(2, 3).toString()).replace(3, 4, "D") 5: return sb.lastIndexOf("CD") 第1部 予想 ided ist ge 01508300 金を

解決済み 回答数: 1
化学 大学生・専門学校生・社会人

全くわかりません 誰か教えてください。

点]課題 3 圧力300kPaの酸素が入っている容積500mLの容器に, 圧力400kPaの窒素250mL を加えたとき,容器内の混合気体の圧力は何kPaになりますか。 ただし, 気体の [B10-02] 温度は変化しないものとします。 (計算式) [10点] 課題 50℃の氷90.0gを100℃の水蒸気にするためには,何kJの熱量を必要としますか。 ただし, 水1gを1℃上昇させるときに必要な熱量は4.18J 水の融解熱は6.0kJ/mol, 気化熱蒸発熱) は40.7kJ/mol, 原子量はH=1.0, O=16.0とします。 (計算式) C 【 有効数字3桁】 (混合気体の圧力は) 450kPa 500kPa 550kPa 600kPa 課題 4 次の濃度に関する問題に答えなさい。 (1) 塩化ナトリウムの20%水溶液をつくるとき 水100gに対して必要な塩化ナトリ ウムは何gですか。 (計算式) x =0.2 100+x 25 100+25-0.2 (必要な熱量は) 204kJ 241kJ 271kJ 300kJ (塩化ナトリウムの質量は) 10g 20g /25g 40g (2) 硫酸の96.0%水溶液のモル濃度は何mol/Lですか。 ただし, 溶液の密度は 1.84g/mLとします。 【有効数字3桁】 (計算式) [20点] 課題 6 次の反応が平衡状態にあるとき, 条件を変えた場合どのように平衡が移動す るでしょうか。 下の問いの空欄に記号 (①~⑤) を記入して答えなさい。 1302 203 - 285kJ ② C (固体) + H2O (気体)=CO+Hz 130kJ ③ N2 +3H2= 2NH3 + 92kJ ④ I2 (気体)+H2 = 2HI + 11kJ ⑤ N2O42NO2-63kJ 硫酸のモル濃度は) 17.6mol/L 18.0mol/L 18.4mol/L 18.8mol/L (1) 温度を高くすると、 平衡が右に移動する反応 ( )( )( (2) 温度を高くすると, 平衡が左に移動する反応 ( (3) 圧力を高くすると, 平衡が右に移動する反応( (4) 圧力を高くすると, 平衡が左に移動する反応 ( (5) 圧力の変化には無関係な反応 )( )( ) ( )

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

影で見にくくすいません 解答のところでシャーペンで①と書いているところ見て欲しいです。 なぜ絶対値β➖絶対値bnになるのか分からないので教えて欲しいです。

x 2 数列の収束と発散 23 基本 例題 018 数列の収束とE-N論法の段階的考察 すべての自然数nに対してb,≠0 である数列{bm} が収束して, limbm=B,B≠0 n100 が に収束することを証明せよ。 本基 とする。次のことを利用して、数列{1} (i) 任意の正の実数に対して、 ある自然数 No が存在して, n≧N となるすべ ての自然数nについて,|bn-β<sが成り立つ。 (n> No) (i)ある自然数 N が存在して,n≧N となるすべての自然数nについて, |bm-B< 21/2Bが成り立つ。 (税込)(8) 指針 E-N論法で,以下により 1 B-bn |bm-B| イーモニ bn B bnB |bnB\ が十分小さくなることを示す。 (i) を用いて,分子のbm-βがいくらでも小さくなること (1) (i) を用いて、 1 bal が上に有界であること (1) 解答 n→∞のときBであるから,十分大きい自然数 N に対して,n≧N となる すべての自然数nについて、1bB 12/13が成り立つ。 このとき,n≧N ならば 131-161=10-B11/131 よって1/181<100116-1-1月では?? これとβ≠0 より ならば 1 2 < となる。 |bn| B 更に、任意の正の実数をとる。 このとき,十分大きい自然数 No に対して,n≧N となるす α6を実数とすると, 三角不等式 a+ba+b が成り立つ。 変形して |a+6|-|a|≧|6| a+b=c とすると |c|-|a|≦|c-al となる。 べての自然数nについて|bm-31<181 が成り立つ。 11. B-bnbn-BI bn Ibn B 2 ここで,N=max {No, Ni} とおくと, n≧N ならば, n≧No かつ≧N であるから以下が成り立つ。 1/1-18-01-106-81-216-812 18 ■ max {No, Ni} は,No 1312 と N1 のどちらか小さ くない方を選ぶ。 B12 B1 2 E=E ゆえに、数列{1} は 1/1 に収束する。 B 検討 この問題では「すべての自然数nに対して 6,≠0」 が仮定されていたが、その仮定を外しても 1 bn B は証明できる。 その場合、数列{6} は B0 に収束するが、途中で0になる可能性 はある。したがって,十分大きい番号nを考えて, b がBに十分近づくようにし,bm0 を保 証してから収束を議論する必要がある。

解決済み 回答数: 1
1/13