学年

教科

質問の種類

法学 大学生・専門学校生・社会人

答を教えて下さい

次の 【問題Ⅰ】 および 【問題 II】 に答えなさい。 【問題Ⅰ】 および 【問題 II】 は、 特に言及がない限り、次のとおりとする。 成立後の株式会社に関するものとする。 定款に別段の定めはないものとする。 株券不発行会社に関するものとする。 種類株式発行会社を除くものとする。 指名委員会等設置会社および監査等委員会設置会社を除くものとする。 【問題Ⅰ】 次の記述における ① さい。 ⑩に入る最も適切な言葉を解答用紙に記入して答えな 1 下記の記述は、 設立に関するものである。 次の2の記述も同じである。 募集設立における募集をした場合において、当該募集の ① その他当該募集に関す る書面又は電磁的記録に ②及び株式会社の設立を賛助する旨を記載し、又は記 録することを承諾した者 (発起人を除く。)は、 発起人とみなされ、 所定の規定の 適用を受ける。 2 株式会社を設立する場合には、次に掲げる事項は、所定の定款に記載し、又は記録 しなければ、その効力を生じない。 金銭以外の財産を出資する者の氏名又は名称、当該財産及びその価額並びにその 者に対して割り当てる設立時発行株式の数 二 株式会社の成立後に譲り受けることを③ 及びその価額並びにその譲渡人の氏 名又は名称 三 株式会社の成立により発起人が受ける ④及びその発起人の氏名又は名称 四 株式会社の負担する設立に関する費用 3 株式会社の特別支配株主は、 当該株式会社の⑤に対し、その有する当該株式会 社の株式の全部を当該特別支配株主に売り渡すことを請求することができる。 1

回答募集中 回答数: 0
経営経済学 大学生・専門学校生・社会人

経済学の投資の問題です。どうすればいいのか分からないので最初から教えてください( . .)"

E 学籍番号 1. ある企業で次のような設備投資計画を検討しています。 ← [← このとき次の問いに答えなさい。 ただし、①と②は四捨五入して1万円の位までで答えなさい。 ① 市場利子率が4%のとき、 この投資の予想収益の割引現在価値はいくらか。← it: e ママママ ② 市場利子率が8%のとき、 この投資の予想収益の割引現在価値はいくらか。 式: e ← 最新鋭の工作ロボット (耐用年数3年) を新たに導入する。 これによって、今 後3年間に、1年目 400万円、 2年目 300万円、 3年目 200万円、 (各年末に発生) の純収益が得られると見込まれる。 J 答え ③この工作ロボットの価格が800万円とすると、この投資計画は市場利子率が4%と8%のとき、NPV 基準に照らして行われるかどうかそれぞれの場合について答えなさい。 年後 軽経済学概論レポート課題① (投資) 14 氏名 2 で 3 2. 市場利子率6.93% で 800万円を借りて、1年目末に400万円、 2年目末に 300万円、 3年目末に 200 万円を返済すると、4年目の期首借入金残高はいくらになるか、下記の表を完成させなさい。 ま また、下の文章のカッコに適切な言葉を書きなさい。 800×(1+0.0693) e 44 答え 期首元利合計 800.00 455.44 期末元利合計 855.44 答え 返済額 400.00 (単位:万円) E 返済後残高 455.44 [← 実は、 1. の設備投資に関する内部収益率は6.93%である。この値と( が一致した場合、 各期の純収益で返済していくとちょうど元利合計を返済することがで きる。 また、市場利子率が4%のとき、この内部収益率の方が ( で、やはり内部収益率基準においても、 このときに投資は行われる。 )なる(p>r) の C

回答募集中 回答数: 0
看護 大学生・専門学校生・社会人

看護学校の過去問なのですが答えが無く、学校も既卒のため解答の入手が出来ません。助けて下さい🥹 漢字などの調べれば分かる箇所は自分でやりますので読解系のものをお願いします🙇‍♀️🙇‍♀️

国語 (解答はすべて解答用紙に記入すること) 埼玉医科大学附属総合医療センター看護専門学校 一次の文章を読んで、後の問いに答えなさい 概念を表す抽象的な言葉を扱うことが、苦手であること。これはどの言語を用いるどの国の人にとっても、同じことかもし れません。その上、明治維新を中心に一気に増えた近代の翻訳語が、いかにも新しい、先進的な、ありがたいものとして特別 な位置を与えられたことは、やはり日本人の言語に(1) 大きな影響を与え続けているように思います。その事情をもう少し解 きほぐしてみます。 抽象的なことばを前にすると、思考や判断の停止が起きやすい。 正しそうで権威あることばであればあるほど、その正しさ を、自分の熟知している具体ときっちり照らし合わせることを怠るわけです。 (2) 安心し油断して、その言葉を生煮えのまま 呑み込んでしまいます。その「正しい」理論や概念を自分の具体に下ろして何事か実践しようという時がくると、 「正しさ」 こそが更なる安心や油断を生みます。 具体化が確かに意味のあるものとなっているか、という検討が甘くなる。 概念語の空転 が起きるわけです。 歯車がきちんと噛み合わないまま、 不確かな震動だけが伝わる、というような状態です。 こうしたことを避ける方法の一つとして、大村はまは(3) 「やさしいことば」を大事にさせたわけです。 抽象度の高い議論、 複雑で難解なことでも、やさしい、ちゃんと身についたことばを介在させて、なんとか理解しようとし、表現し伝え合えるよ うに、と願ったのは、偉そうな顔をしたことばに飲み込まれないためでもあります。 偉そうな抽象語が空疎に使われている時 には、その空疎さに気づけるという力も育ちます。 これは話し言葉についても、書き言葉についても同じです。 「難しげ」な 抽象語が人の脳を空回りさせること、わかったようなわからないような、半端な状態に(a) オチイらせることを、大村は中学 生を教えながらいやというほど見続けていました。 その空転に気づかせることが、ことばの精度を上げるための第一の入り口 になっていたと思います。 「やさしいことば」で言えないことは、本当にはわかっていないことなのかもしれません。 ちなみに、私は比喩を多用していることは自覚がありますが、それも、抽象語がもたらす早すぎる納得と受容を破ろうと、 小さい爆弾を投げ込んでいるような気持ちなのです。 そして、元をたどれば、大村はま自身が比喩を巧みに用いる人でした。 使い古されて(A)並になってしまった比喩はたいして役に立ちませんが、表現力を伴った比喩は思考の空転を防いでいた のです。 理論と実践、抽象と具体の繋ぎの不確かさは、教育現場でもしばしば見ます。国から出た (b) シシンにも、さまざまな研究 者による論文にも、「なるほど、そうだ」と思う知見が確かにあります。 しかし、それが、生きた子どもたちがずらりと居並 ぶ日々の教室で、実際に、確かに、意味のある変革を生み成果をあげることに結びついているか…..……。 そこの(c) 脆弱性はか なり深刻だと思います。優れた理論が優れた実践と成果につながるという保証はない、ということ。 大村はまはその大いなる 弱点を現場人として痛感するからこそ、実践に徹するという姿勢を貫いたとも言えます。現実の厳しさを見切った結果でしょ う。 逆方向((B)から(C)する場合)でも、不確かさはつきまといます。たとえば話し合うことの大切さを子どもに知 らしめたいというのは、たいへん真っ当なことです。そのために日本中の教室でなにかにつけて話し合いをさせますが、その まとめとして「今日の話し合いはどうでしたか?」という教師の問いに、子どもはまず間違いなく「お友だちのいろいろな意 見を聞くことができて、良かったです」 というような返答をするわけです。 友だちのどの意見のどの部分を、どのように捉えた結果、「良かった」というのか、それは曖昧ですし、実はそんな実態な どまるでないという可能性もあります。話し合えて良かった、という着地点が最初からあって、それをなぞっているだけであ ることが多い。望ましい結論が最初から期待されていることを、子どもはかなり幼い頃から理解していて、目の前のあれこれ の具体的なものごとを自分の目で捉え理解する際に、知ってか知らずか、(4) 大きな圧力を受けているのだと思わずにはいら れません。期待された通りの抽象語を使って一般化するわけです。 そういう(5) 内実を伴わない発言は、言うだけ空疎さを深

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

統計学の確率密度関数の問題です。 2枚目の資料を参考にして解いていたのですが、難しかったのでどなたか詳しく教えていただくとありがたいです。

問3AさんとBさんが以下でルールが定められたゲームをする。 (ルール 1) 表に 1,裏に0と書かれた1枚のコインを, AさんとBさんがそれぞれ 2回ずつ投げる。 (ルール2) A さんの投げたコインに書かれた数を足し, その値を n とする。同様に Bさんの投げたコインに書かれた数の和も n とする。 (ルール3) -1,0,1と書かれたカードが何枚かあり、2つ束 aとbになっている。A さんは束 a から na枚のカードを引き, Bさんは束b からnB枚のカードを引く。 た だし, 2回引く場合は1枚目のカードをもとに戻してから再度引くこととする。 (補 足1も参照) (ルール4) (ルール3) におけるカードの数の積をそれぞれX,Y と書くことにする。 例えば、Aさんが2枚のカードを引き, その数が 1と1だとしたら, X = -1x1 = -1 である。 また,Bさんが1枚のカードを引き, その数が1だとしたら, Y=1とす る。(補足2も参照) そして,この数X, Y の大きい方を勝者とする。 (補足1) ルール3における束 a と束bにあるカードを引く確率はそれぞれ次で与え られているものとする。 束\数 -1 0 1 1/4 1/2 1/4 1/6 1/2 1/3 a b (補足2) A さんが1枚もカードを引かない場合, X = 0 と定義する。 同様に, B さん においてもカードを引かない場合は Y = 0 とする。 X, Y に対する同時確率密度関数をh(x,y) と書くとき, 次の問いに答えよ。 (1) n=2のときに X = 1 となる確率を求めよ。 (2) (1,-1) を求めよ。 (3) P(X = 1,Y≠0) を求めよ。 (4) AさんとBさんが引き分ける確率を求めよ。 (5) AさんがBさんに勝つ確率を求めよ。 (6) E[X] を求めよ。 (7) E[Y] を求めよ。 (8) X,Y の共分散 C' [X, Y] を求めよ。 (9) V[4X + 12Y ] を求めよ。

回答募集中 回答数: 0
1/7