学年

教科

質問の種類

公務員試験 大学生・専門学校生・社会人

12番のトランプの問題がよく分からないです、 なぜ数字を限定して11.12.13とわかるのでしょうか、 他の1.2.3…………ってなる可能性はないんですかね、🤔 説明簡単に書かれてるだけなのか、これじゃ理解し難いので誰か教えてくださいm(_ _)m🙏

() 18 判断推理 No.12の解説 条件からの推理 (位置関係) →問題はP.148 正答 3 赤と黒が交互,クラブとハートが隣り合わないことから, 左の6枚にクラブとダ イヤ、右の6枚にスペードとハートが並んでしまうことになる。そして他の条件よ り次の図のように位置が決まる。左から2番目と4番目のダイヤだけが確定しな い。 よって正答は3である。 1 2 3 4 5 LO 6 7 8 9 10 11 12 J K K Q K J J K Q 黒赤黒赤 黒 赤 黒 赤 黒 赤 黒赤 No.13の解説 条件からの推理(位置関係) 問題はP.148 正答 2 紅茶を注文した人を紅1, その右隣の人を紅2, ビールを注文した人をビ1, そ の右隣の人をビ2などとし, 条件ウが成立する状況を考えてみる。 下図 I①~④において, ①を紅1 とすると,②は紅2。 ここでウーロン茶を注文 したウ1を探すと条件(ウ)を満たすのは ③ しかなく、 ④はウ2。 つまり紅1の正 面はウ1である。次にビールを注文したビ1は②か④であるが,いずれにしてもビ 1の正面は紹1になる。 以上を念頭におくと,条件 (ア) から図IIが書ける。 条件 (イ)より紹興酒を飲 んでいないのはAかAの左隣だから,BはAの左隣。 よって, ウーロン茶を飲んで いないCはBの左隣にくる。 残るDはAの右隣。 これで, A~Dの位置と各人が飲 んでいる2種類の飲み物のすべてが決まる。 よって正答は2である。 図 I ③ウ1 図Ⅱ 紹2 紅1 1 24 ② 紅2 1紅2

回答募集中 回答数: 0
公務員試験 大学生・専門学校生・社会人

12番のトランプの問題がよく分からないです、 なぜ数字を限定して11.12.13とわかるのでしょうか、 他の1.2.3…………ってなる可能性はないんですかね、🤔 説明簡単に書かれてるだけなのか、これじゃ理解し難いので誰か教えてくださいm(_ _)m🙏

() 18 判断推理 No.12の解説 条件からの推理 (位置関係) →問題はP.148 正答 3 赤と黒が交互,クラブとハートが隣り合わないことから, 左の6枚にクラブとダ イヤ、右の6枚にスペードとハートが並んでしまうことになる。そして他の条件よ り次の図のように位置が決まる。左から2番目と4番目のダイヤだけが確定しな い。 よって正答は3である。 1 2 3 4 5 LO 6 7 8 9 10 11 12 J K K Q K J J K Q 黒赤黒赤 黒 赤 黒 赤 黒 赤 黒赤 No.13の解説 条件からの推理(位置関係) 問題はP.148 正答 2 紅茶を注文した人を紅1, その右隣の人を紅2, ビールを注文した人をビ1, そ の右隣の人をビ2などとし, 条件ウが成立する状況を考えてみる。 下図 I①~④において, ①を紅1 とすると,②は紅2。 ここでウーロン茶を注文 したウ1を探すと条件(ウ)を満たすのは ③ しかなく、 ④はウ2。 つまり紅1の正 面はウ1である。次にビールを注文したビ1は②か④であるが,いずれにしてもビ 1の正面は紹1になる。 以上を念頭におくと,条件 (ア) から図IIが書ける。 条件 (イ)より紹興酒を飲 んでいないのはAかAの左隣だから,BはAの左隣。 よって, ウーロン茶を飲んで いないCはBの左隣にくる。 残るDはAの右隣。 これで, A~Dの位置と各人が飲 んでいる2種類の飲み物のすべてが決まる。 よって正答は2である。 図 I ③ウ1 図Ⅱ 紹2 紅1 1 24 ② 紅2 1紅2

回答募集中 回答数: 0
経営経済学 大学生・専門学校生・社会人

最大化すべき効用と、最大化すべき消費者余剰がわかりません。 2財モデルの消費者効用最大化の問題は理解できるのですが、一財モデルは、どのようなグラフを書くのか分かりません。 解説お願いいたします。

問題 ・財の消費量をæとすれば、財の効用関数が U (æ) = 1200√æで表されるとする。 . 財の価格をp、所得をIとする。 以下の問題に答えよ。 1.p = 200、I = 3000 の場合に、予算制約と最大化すべき効用、 消費者余剰について、æで表す とどうなるだろうか。 2.1の場合に、需要量である最適な消費計画 * を求めてみよう。 (ヒント: 例えばv=t と置 けば、単に2次関数の最大化問題であり、 簡単な計算で求めることが出来る。 価格が限界効用と 等しくなるという消費の最適化条件からも、 求められる。) 解答 1. 予算制約式は px ≦ I であるから、予算制約は200æ 3000 となり、 æ ≦15。 最大化すべき 効用は3000-200+1200√であり、最大化すべき消費者余剰は1200æ-200æであ る。 2. ヒントに従って、3000-200t2 + 1200t を、 について最大化すれば良い。 微分して0と置け ばt=3と求められるので、æ=9が最大値を与える最適解の候補である。 かつ、この値が予算制 約を満たしているので、確かに最適解であると言える。(価格=限界効用は、 200= であ る。 この条件式からも求められる。) 600

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

確率統計の問題です。かなり難問で詳しく解説いただけると幸いです。

問5次のようなパズルのような問題がある. 問題を簡単にするために1年は365日とする (閏年は考えない). ある工場では人の工員を雇うことにする が,このうちの1人でも誕生日の人がいればその日は休みに, 1人も誕生日の人がいなければ働き、その日は 人数と同じn (単位) の利益を得るものとする。このとき,この工場の1年間の利益は働いた日数 xn にな る.例えばたまたま全員が同じ誕生日の場合は働いた日数=364 なので 364n の年間利益を得る. n人の工員をランダムに雇うとき, すなわち人それぞれの工員の誕生日は独立で一様分布に従うときこの年 間利益は確率変数になるが,その期待値を f(n) とする. この f(n) を最大にする n を求めよ. この問題は一見かなり難しいが以下の設問に沿って解答することにより f(n) を最大にする n とその時の f (n) の値を求めよ. (1) n 人の工員を雇うとき,確率変数 S を1人も誕生日の人がいない日数とするとき f(n) を S (やその期待 値, 分散など) を用いて表せ. (2) i=1,2,...,365を日にちを表すパラメータとする. 確率変数 X を次のように定める 1日に1人も誕生日の人がいなかった場合 Xi = 0日の誕生日の人がいた場合 このときP(X = 1) を求めよ. (3) (2) の設定で S を X を用いて表せ.また E[S] を求めよ. (4) 以上を用いて f(n) を具体的に表せ. (5) (4) で求めた f(n) より f(n+1)-f(n) を考えることで f (n) が最大になる n を求め, f(n) の最大値 (の 近似値)を与えよ.

回答募集中 回答数: 0
1/17