学年

教科

質問の種類

化学 大学生・専門学校生・社会人

プリントや基本問題はできるのですがこれを見た途端なんにも分からなくなりました、しかく2の(1)以外解説お願いします、😰

炭素と水素だけからなるある化合物を完全燃焼させると, 二酸化炭素 gと水 2.7gができた。 また, この化合物の分子量は78であった。 次の(1), 原子量 H = 1.0, C = 12,0 = 16 (2)の問いに答えよ。 この化合物の分子式はどれか。 ① CH6 2 C6H8 3 C6H12 4 C6H14 (2)この化合物に含まれる炭素と水素の原子数の比と等しいものはどれか。 ① メタン ③ エチレン ② エタン ④ アセチレン 2 有機化合物に関する次の(1)~(3)の問いに答えよ。 (1) 分子式 C5H12 で表される炭化水素には三つの異性体が存在する。それら の構造式を書け。 (2) 枝分かれのない炭化水素 C5H12の水素原子1個をヒドロキシ基に置換し た異性体をすべて記せ。 ただし, 鏡像異性体は考慮しなくてよい。 (3) 枝分かれのある炭化水素 C5H12 の水素原子1個をヒドロキシ基に置換し た異性体をすべて記せ。 ただし, 鏡像異性体は考慮しなくてよい。 3 次の(1)~(4)の文中のA~Eの有機化合物の名称を書け。 (1)160~170℃に加熱した濃硫酸にAを加えるとエチレンが得られる。 (2) エチレンに臭素溶液を反応させるとBが生じる。 (3) アセチレンに,物質量比1:1で塩化水素を付加させるとC が生成する。 (4) エタノールを酸化させると, まずDが生じ, さらに酸化させるとEが生 じる。 or 物の構造式の決定 p.204~209 構造異性体 p.211 ケン, アルキン, ホールの酸化 p.215~221,22 4 エタノールを用いて(1)~(3)の実験を行った。 それぞれの変化を化学反応式 で示せ。 (1) エタノールにナトリウムを加えた。 (2)130~140℃に加熱した濃硫酸にエタノールを加えた。 (3) エタノールと酢酸の混合液に濃硫酸を加え, 約70℃の温水に浸した。 5 次の文を読み, A~Eの構造式を書け。 分子式 C4H10O で表されるアルコールには,1-ブタノールおよび A, B, Cの四つの構造異性体が存在する。 このうち A, B, Cに酸化反応を試みた ところ,AとCは酸化されたが,Bは酸化されにくく, 生成物を得ること ができなかった。 Aが酸化されて得られた化合物Dにフェーリング液を加 えて加熱すると, 赤色沈殿が生じたが,Cが酸化されて得られた化合物 E は, フェーリング液と反応しなかった。 66 分子式 C4HBO2 で表されるエステルについて, 次の(1),(2)の問いに答えよ。 (1) 何種類の異性体があるか。 (2) これらの異性体のうち,エステルを構成するカルボン酸が銀鏡反応を示 すものの構造式をすべて示せ。 アルコールの性質 p.224~228 アルコールの酸 アルデヒド ▶p.226, 230 カルボン酸, p.234~

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

マンサスの法則の問題です。 解いてみましたが、1問目からつまずいています。 1問目から最後まで教えていただきたいです。

1. ソ連 (現: ロシア)の人口は1959年には2億900万人だったか、 割合で指数関数的に増加していくものとして概算された。 その概算式は、 dP =kP dt と表される(k=0.01)。 このとき、 1959年以降の予測人口を求めよ。 1970年の予 測値はいくらか? また人口が1959年の1.5倍になるのはいつか? pt P(t) = Poche: 2.09×108 (10.01) e 0.01+ 1959年 11午後 1970年 10.017" P(1)=2.09×108 (1+0:01)11 0.01×11=0.1 2.3317×108 229 よって 11年後の1970年は約2億3317万人 人口が1959年の1.5倍になるのは 2.09×108× ×1.5=3,135×108人 2.09×108c(1.01)と =3.135×108 1.01t=1,50 2. ニュージーランドの人口は以下の表のように与えられている。 年 人口 1980 3.13 × 106 1985 3.26 × 106 人口増加率 (1) 微分方程式が1. と同じ形式となるとき、 上の表をもちいて係数の値を計算せよ。 3.26 - 3.13 0.13 0.026 1985-1980 5 0.026×100=2,60(%) よって K= 2.60 (2)また、1935年, 1945年, 1953年, 1977年の人口を予測し、以下に与えている実際の データと比較せよ。 さらに、モデルの妥当性について考察せよ。 人口 (モデル) 年 人口 (実際) 1935 1.491 × 106 1945 1.648 × 106 1953 1.923 × 106 1977 3.140 × 106 P(t) = Pocht_1.491×10°e 0.0137 係数の値を計算 1.648 - 1:491' 1945-1935 0.157 10 =0.0157

回答募集中 回答数: 0
経営経済学 大学生・専門学校生・社会人

1つでもわかる方教えてください🥹🙏

問題 2.1 掛け金を宣言した後、確率 0.8で掛け金を受け取り、確率 0.2 で掛け金を支払うというギャンブルがあ る。 現在1万円を所持しているあるギャンブラーは、0万円以上1万円以下の中で, 掛け金をどれだけにしようか考え ている。なお,このギャンブラーのリスク下の選好は期待効用仮説に従い、所持金x 万円に対する効用はu(x)=logx で 表される (log は自然対数) と仮定する。 (1) 掛け金∈ [0,1] の下で,最終的な所持金を X とする。 X の確率分布を求めよ。 (2) 最終的な所持金 X の期待値 E[X] および期待効用 Eu (X)] を (変数の式として)求めよ。 (3) 以下の掛け金の場合において, E[X] と [u (X)] を (比較のため必要に応じて数値的近似値で)求め,これら5 つの掛け金の間で,ギャンブラーの選好順序がどのようになっているか答えよ。 (4) •r=0 (ギャンブルをしないこと) • r = 0.25 • r = 0.5 • r = 0.75 r=1 (ギャンブルに全額をつぎ込むこと) 確率変数X の期待値と期待効用を図で表現せよ。 《ヒント: 授業内容を参照すること。> =0.5のとき, (5) ギャンブラーが選ぶべき掛け金∈ [01] を求めよ。 《ヒント:110g(+1)= log(1-1)=1/11/

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

位置関係の問題です。途中までは分かるのですが、何故三角形AESと三角形MDSが共に二等辺三角形だとわかるのでしょうか…?教えて頂きたいです🙇🏻‍♀️🙇🏻‍♀️

15 04 位置関係 ② 方角を考慮して図を描く! 頻出度 ★★★☆☆ 重要度★★★☆☆ コスパ★★★☆☆ 方角を考慮した位置関係の問題で、 ほとんどの場合、 上を北とするなど方角を 決めて図を描きます。このタイプの問題は、距離(長さ)の条件から図形を考 えるものが多く、三平方の定理や相似から求めるなど、 数的推理の要素が大き いです。 T_PLAY1 方角と距離の条件から図を描く問題 XX 2X 3X 警視庁Ⅰ類 2011 A~Fの家と駅の位置関係について、次のア~オのことが分かっている。 Aの家の8km 真南にBの家があり、AとBの家を結ぶ線分上に駅がある。 Cの家はBの家の真東にある。 ウ Dの家はCの家の1km 真北にあり、Dの家から北西に進むと駅を通り Eの家に着く。 .Eの家はAの家の2km 真西にある。 .Fの家は駅の真東、かつ、Dの家の北東にある。 以上から判断して、確実にいえるのはどれか。 1.Aの家から駅までの距離は2.5kmである。 2.Bの家から駅までの距離は5km である。 3.Cの家から駅までの距離は√74kmである。 4.Dの家から駅までの距離は4√2kmである。 5.Fの家から駅までの距離は10kmである。 上を北方向として図を描こう! まずは、誰かの家を基準として、そこ につなげるんだ。距離が示されている条件ア, ウエに着目してみて! 方角の条件がありますので、上を北として地図を描くように位置関係を図に します。 方角と距離がともに示されている条件ア,ウエに着目すると、アとエには Aの家が共通していますので、これらを組み合わせて図1のようになります。 位置関係 ②

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

問題1が解けません途中式含めて教えていただけると助かります

1.2 解の存在と一意性 3 1 1階常微分方程式 本章では微分方程式の中でも最も単純な1階常微分方程式の解き方を学ぶ、単 純とはいっても解がすぐに見つかるとは限らない。 比較的容易に解が得られる微 分方程式にはいくつかのタイプがあるので、それをみてみよう.これらの解法は 2階以上の、より複雑な微分方程式の解法の基礎でもある. §1.1 微分方程式の階数 ェを変数とする未知関数をg(x)として F(x,y,y,y',...) = 0 x, y(x), y(x) = dy dx' d²y y" (x) = dx2, から成る方程式: (1.1) を常微分方程式という. また, 導関数の微分回数を階数といい, 階導関数 y(n) = dmy/dr” が (1.1) の最高階数の導関数のとき, (1.1) をn 階常微分方 程式という. たとえば,x軸上で力f (x) を受けて運動する質量mの質点の時刻での 座標x (t) は, よく知られているように,ニュートンの運動方程式 m = f(x) dt² (1.2) に従う.これは変数がt, 未知関数がェ (t) の2階常微分方程式の例である. 他方,同じ問題を質点がポテンシャルV (x) の中を力学的エネルギーEで 運動しているとしてエネルギー保存則の立場で見ると, d²x + V (x) = E (1.3) と表される.この式に含まれる導関数はdr/dt だけなので,これは1階常 微分方程式である。 [問題1] f(x)=-dV (x)/dr として,上の2式が等価であることを示せ. ヒント:エネルギー保存則によりEは一定であることに注意し、 (1.3) の両辺を で微分してみよ。) 本章では,最も階数の低い1階常微分方程式について学ぶ。 §1.2 解の存在と一意性 微分方程式の解の存在やその一意性などというと大変難しそうに聞こえる が,これから見るように直観的にはそれほど難しいことではない. 1階常微 分方程式のもっとも一般的な形は (1.1)より F(x,y,y)=0 (1.4) と表される. これをの方程式と見なして, それについて解けるときには dy = f(x, y) dr (1.5) と表される.この微分方程式は、 図1.1に示したように,その解y (x) があ ったとして解曲線y= y (x) をry 平面上に描くと, 任意の点(x,y) でのこ の曲線の接線の傾きがf(x,y) であることを意味する. したがって,(1.5) を解いてy(x) を求めるというの は, 曲線y=y(z) 上の点(x,y) で その接線の傾きがちょうどf (x,y) に等しいものを見出すことに相当す る. このことからまた, (1.5) を幾何 学的に解く方法も考えられる. ry 平面上の任意の点(x,y) f (x,y) を計算し,その値を傾きとしてもつ y 0 接線の傾き: f(x,y) 図 1.1 y=y(x)

回答募集中 回答数: 0
1/57