学年

教科

質問の種類

数学 大学生・専門学校生・社会人

例4.28について質問です。(1)のfx^2+fy^2=、、の式までは分かっているのですがそこからいきなり(2)のラプラシアンの式がどうやって出るのかわからないです。どうか教えてください。

19:06 3/3 変数変換を学んだついでに 4.2.7. 変数変換におけるラプラシアンの表示. : 全単射, C2-級, = -1 とする. 関数 f(x) : D → R, g(s) : UR は f(x)=g(y(z)) = g(s) = f (d(s)) をみたしているとする. [5]. f(x,y) = √√√x² + y² = r = g(r,0). (**) of fi = oni, dxi ga = asa のように書く. 添字の,上下, 文字スタイルで区別がある. ここでは∇f = (....fi....), ∇sg = (..., ga,...) は行ベクトル . 逆写像のヤコビ行列は Þ : ((R”, s = (… .., sª,...) > ) U → D ( C (R¹, x = (..., x², ...))) となる.このとき連鎖律より次の関係式が得られる. f(x) = g(s(x)) * x³ THALT, fi = Σa ga$iº. & 5K füi = Σa ((Σ3 9aß$?) sº + 9asi). B (1) ▽zf = ∇sg.d.同様に∇sg = ∇f.do. (2) Axf := Σi fü = Σa‚ß Jaß(Vrsª, ▼+$³) + Σa 9aArsª. 2² 8² Ər² 20² 9回目終わり 例 4.2.8. R2 の極座標でのラプラシアンの表示 重 : UC (R2, (1,0)) → DC (R2, (x,y)), I = 重-1 πr TO cos -r sin 0 d = Yr yo sin 0 rcos o TI Ty cos o sin 1 T dy = = (d)-1 200 - sine cose) == (-²2) r 注: r = x2 +¥2,0 = tan -1 y の微分はしなくても煙は求められる. I (1) (fæ, fy) = (gr,90) · dV. (fz, fy) = (gr, ¼90) U, U = (- 特に fz + f = g + /1/129. 注: d では1列+2列 (1 行 ⊥2 行ではない). d では 1行2行 (1列+2列ではない). 8² a2 8² 12 10 + + + əx² 042 Ər² r² 20² rar + はそもそも考えない. d = (st) at (= (dd) -1): 第α行を ▽ zsa とする行列 lai (4) A = + U= 問題. R3 の極座標でのラプラシアンの表示. (x,y,z)=d(r,0,4)= (rsin A cos o, r sin A sin p, rcos E ↓ = Φ-1 とする. (1) d = (dd) を求めよ. (2) (fx,fu, fz) = (gr, 1,90, sin694) U, Uは直交行列, と書けることを示せ . cos 0 (3) Ar = ², A0 = A = 0 を示せ . r2 sin 0 8² 182 + Ər-2 2002 / sin A cos y sin A sin y cos A cos o cos A sin - siny cos 1 2 20 cos a + rar r2 sin 000 cos o sin 0 sino cos0 72 sin20042 cos 0 - sin 0 0 は直交行列と書ける. を示せ. | .d=Uの2行目に !を3行目に • itc-lms.ecc.u-tokyo.ac.jp 3 rsin 0 を掛けたもの. Ć

未解決 回答数: 0
物理 大学生・専門学校生・社会人

全くわかりません。 有識者さんどなたかよろしくお願いします…

[V) PATEICOLE I ZE ST 点にした仕事を求めよ. 【問2】図のように, 一部を切り取った半径 R の円環の左端に,鉛直上方から質量mの おもり落とし, 円環に沿って滑らせる. 最下点をおもりが通過したときの時刻を t = 0, 速さがuであったとして, 以下の問に答えよ.ただし、 重力加速度の大きさをg, 円 環とおもりの間には摩擦は無いものとする.また, 円環の中心を原点とし, 鉛直下向き を軸,水平右向きを軸にとることにし.また,回転角0 は,軸から反時計回り を正の方向として測ることにする. L (i) 時刻におけるおもりの回転角が9(t) であったとして,円環上におけるこのおも りの運動方程式を,円の接線方向と法線方向に分けて書き下せ. (円運動の加速 度については、最後のメモを参照。 作用する力を接線方向と法線方向に分解して それぞれについて運動方程式を立てよ) ( ) 接線方向の運動方程式の両辺に(t) をかけてから、tについての積分を実行*1することで, é(t) と(t) の関係式を導け. この際、積分定数は初期条件を満たす様に定める必要があることに注意せよ。 (iii) 力学的エネルギー保存則の成立条件を述べたうえで、この問いについては力学的エネルギー保存則が成立することを 示せ 円環の断面図 1 VO + C N (iv) 最下点を位置エネルギーの基準点として, 力学的エネルギー保存則の式を書き下し, それが (ii) で求めたものと一致す ることを示せ. 検索 (v) おもりが角8(t) の位置にあるとき, おもりが円環面より受ける垂直抗力 N を 8(t) を用いて表せ.((ii) の関係式と運動 方程式の法線成分を用いて0(t) は使わないようにせよ) (vi) No=2√gRのとき, おもりはどの高さまで上がることができるか.最下点からの高さで答えよ. @ mg (vii) 「最上点まで, 円環に沿って上がるための の下限を求めよ。」 という問に対して,ある学生が 「最上点においての速 度』がゼロを超えればよい.最下点と最上点で力学的エネルギー保存則を立てて 1/12mg = 1/12m² +2mgR>2mgR. これより となる」 のように答えたが,すでに (vi) で見たようにこれは誤りである。 この学生の解答のどこ 2vgR FUJITSU に誤りがあるのかを述べたうえで, 正しい解答を与えよ. メモ: 円運動の加速度 半径Rの円運動をする質点の位置をr= R (cos0i + sin j) のように表すとき (0は時刻のときの中心角), 加速度は a = RÖ (-sini + cos 0j) - RO² (cos 0i+ sin(j) と表される.なお, sin Oi + cos dj は円の接線方向の単位ベクトルで, cos di + sin Oj は円の法線方向の単位ベクトル である. -

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

わかる方おられないですか

問4 理想良導体と真空の境界面 (±0) における入射電磁波の反射と透過, およびこれらの 連続性を考える. すなわち, 電磁波が+方向に導体 (境界はz=0) に入射するとき, 電 場に対しての連続条件, lim_[Ei(z,t) + Er(z,t)] = lim Ee(z,t). (左辺 真空側,右辺導体内部) ト0' 24+0 が成り立つものとする. ここで,添え字のi, r, tはそれぞれ入射波, 反射波, 透過波を意 味する. 以下では問3を理想化し、 近似的に導体内部 (境界を含む, 0) の電場をゼロ と考える(μ= Mo とする). 入射波をFi(z,t) = (Encos(kz-wt), 0,0) とするとき, (1) 導体表面での振幅反射率 (反射電場と入射電場の成分の比) を求め,入射電場が固定 端反射をすることを説明せよ. (2) 反射電 Er(s,t) の表式 (ベクトル成分) を求めよ (-z方向に進むことを考えて書き 下せ). (3) 定常状態では真空側 (z<0の領域)に電場の定在波が形成されることを数式で示し その節と腹の位置の概略を図示せよ。 また, 節と節 (腹と腹)の間の距離を波長入を用 いて表せ. (4) 電場の表式から入射磁場と反射磁場の表式 (ベクトル成分)を求めよ. (5) 磁場の振幅反射率を求め, 磁場はこの導体表面で自由端反射されることを説明せよ。 (6) 定常状態では<0 の領域に磁場の定在波も形成されることを数式で示し, その節と腹 の位置の概略を図示せよ.

回答募集中 回答数: 0