学年

教科

質問の種類

数学 大学生・専門学校生・社会人

(3)で①に-2分の3をかけたらダメなんですか? お願いします。

2年数学 過去問題を解く (2020(R2)) 年度 1月 ( 日( 配布 ① 次の | の中に適当な数または式を入れよ。 ただし (2), (5) は ①~③の番号で答えよ。 (1)s^²-18 を因数分解すると になる。 (2) 三角形ABCにおいて, ∠A<90" であることは、三角形ABCが鋭角三角形であるための . ① 必要十分条件である ③ 十分条件であるが必要条件ではない 10 -8 6 (3) S(s) はについての2次関数とする。 方程式∫(x)=0の解は1.3であり, S(0) 2 である。 放物線y f(x)の頂点のy座標は [ である。 (4) 三角形ABCの辺BC, CA を1:3に内分する点を それぞれP, Qとする。 線分 AP, BQ の交点をRとする。 AP13 のとき, AR- である。 2 0 (5) 下のヒストグラムはS市の30日間の最高気温のデータをまとめたものである。 ヒストグラムに 対応する箱ひげ図は である。 (日) Sif 4 6 8 10 12 14 16 18 20 (C) ② 必要条件であるが十分条件ではない ① 必要条件でも十分条件でもない (1) (+2)(49) =(+2)(22+3)(21-3)!! X (2) <A<90°鋭角三角形 12月脇形 【2年1月県下一斉模擬試験 】 【科目: 数学 単元名 1 I No. ( 4 ) ( 3 ) 宜( 号 氏名( 2 a = - ① H -1/(2x)+2 - 3f₁a-15²-17 +2 面倒)∠A=30°,<B=1200 よって、必要条件であるが十分条件でない② (³) f(a)= a (x+1)(x-3) (a: 12*) 255113. f(0)=0(0+1210-3) = -3Q=2 よって、ナッシー/(ベースメーン) =1+1+x+2 1012 14 16 18 20 (°C) 3 →8 X 4^-9 -9 → 4-18 -1 Q -3- (5) よって、頂点の座時はり 35¹1ht) fra) = − }(20-2) = 0 x=1 fev: -(1-2-3)= (4) ・メネラウスの定理より. QA =1 RP, BC x PB ca AR RP 4 xx=1 RP AP=13なので、AR=12/11 4~6°3 6°~80 1 8°~ 10⁰ 4 10~1283 12⁰~140 7 14° ~ 16° 9 16°~18° 2 1180~20° T Qi 中央値Q2は12~1 第1回分程改Q」は80~10 第3 〃 Q3は14~160 よって、② 1~7⑧9~516~22③3 24~30 Q2

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

簿記3級の問題についてお伺いしたいです。 画像の問題で、8年3月31日の前受家賃の計上がなぜ8年4/1~7/31までの4ヶ月分なのかが理解できません。 本文から期末は3/31なのになぜ7/31までの計算になるのでしょうか? よろしくお願いいたします🙇‍♀️

(1) 山梨株式会社 (決算年1回、 3月31日) における次の取引にもとづいて、 答案用紙に 第2問 示した受取家賃勘定と前受家賃勘定を記入しなさい。 ただし、 解答にあたり次の点に注 意すること。 20点 1. 取引は上から順に記入すること。 2. 日付欄は採点対象外とする。 3. 勘定科目および語句は下記の語群から選択し、 ア~クの記号で解答すること。 [語群] ア. 前期繰越 イ. 次期繰越ウ.受取 エ. 前受才.前受家賃 カ.受取家賃 キ.損益ク.前払 ×7年4月1日 前期決算日に物件Aに対する今年度4月から7月までの前受家賃を計上してい ので、再振替仕訳を行った。 1か月分の家賃は¥100,000である。 ×7年8月1日 物件Aに対する向こう半年分の家賃 (8月から1月まで)が当座預金口座に振り 込まれた。 1か月分の家賃に変更はない。 ×7年9月1日 物件Bに対する向こう1年分の家賃が当座預金口座に振り込まれた。 この取引は 新規で、1か月分の家賃は¥130,000である。 x8年2月1日 物件Aに対する向こう半年分の家賃 (2月から7月まで)が当座預金口座に振り 込まれた。 今回から1か月分の家賃は¥110,000に値上げしている。 x8年3月31日 決算日を迎え、 前受家賃を計上した。

回答募集中 回答数: 0
情報 大学生・専門学校生・社会人

2進数に関するご質問です なぜ「111」が「マイナス1」に、「110」が「マイナス2」になるのかがわかりません。 負の数を表す2進数を10進数に戻す方法がわかりません よろしくお願いします🙇🏻‍♀️

問 3 (FE-H30-S-01) 111 110 |101 イ ある整数値を負数を2の補数で表現する2進表記法で表すと最下位2ビッ りに関する記述として, 適切なものはどれか。 ここで,除算の商は、絶対 トは “11” であった。 10進表記法の下で,その整数値を4で割ったときの余 値の小数点以下を切り捨てるものとする。 解説 具体例を考えるとわかりやすいので、下記の 「3ビットの2進数」の例を想定します。 100 ア その整数値が正ならば3 ウ その整数値が負ならば3 → マイナス1 (▼) → マイナス2 → マイナス3 → マイナス4 イ その整数値が負ならば-3 エ その整数値の正負にかかわらず 0 2011 →プラス3 (▲) 2010 → プラス2 2001 → プラス1 1000 →ゼロ 問題文の 「負数を2の補数で表現する2進表記法で表すと最下位2ビットは “11”」 であるケースは、 上記の です。 それぞれについて、問題文の<10進表記法の下で, その整数値を4で割った 除算の商は、絶対値の小数点以下を切り捨てるものとする>を計 算して、各選択肢に当てはめてみます。 ときの余り、(中略) ここで, ア その整数値が正ならば3 マイナス1 (▼) 上記の条件に該当しません。 プラス3 (▲) 3÷4=0.75 上記★★の下線部より、0.75の小数点以下が切り捨てられて、商 は「0」、余りは「3」 <0×4+3=3> です。 したがって、本選択肢が正解です。 ●その整数値が負ならば-3 マイナス1 商は「0」、 プラス3(▲) 上記の条件に該当しません。 ・-1÷4=-0.25 上記の下線部より、 0.25の小数点以下が切り捨てられて、 ◆余りは「-1」 <0×4+ (-1)=-1>です。 したがって、誤りです。 ●その整数値が負ならば3 上記◆の下線部は、上記の下線部と同じですので、上記 工 その整数値の正負にかかわらず0 の下線部より、本選択肢は誤りです。 上記ア~ウの各選択肢で検討したように、マイナス1(▼)とプラス3(▲)の両方とも、余りが「0」 になることはありません。

回答募集中 回答数: 0