学年

教科

質問の種類

物理 大学生・専門学校生・社会人

どなたかこの材料力学の問題を教えて頂けないでしょうか?専門分野では無いので困っています。

1. 2004年8月9日、関西電力の美浜原発の配管が破裂し、水蒸気が噴出する事故が発生 しました。図1は蒸気が漏れた個所を示しています。 原因は図2に示すように、流量計 測装置を通過した後の水流の乱れにより配管内壁の摩耗が進み、その結果配管の肉厚が 薄くなって破裂に至ったものです。 図2に示されているように、破裂した配管はもとも との内径540mm、肉厚は 10mm でした。内壁が摩耗したことにより肉厚は最も薄いと ころでは 2mm にまで減少していました。 配管には、引張り、曲げ、ねじりなどの外力が作用しています。これだけ肉厚が減少し たことにより、それぞれの外カに対する強度低下はどのくらいであったかを計算して示 しなさい。 1ッ bn Tte Asahi 事故があった美浜原発3号機の構造 タービン建歴 蒸気が充満 原子炉格納容器 蒸気。 加圧器 水 制御棒 主給水 ボンプ 蒸気が漏れた個所 一冷却水 摩耗が進む 燃料 冷却材 ポンプ 口1次系 2次系 流量計測装置(オリフィス) 図1 図2 復水器から 復水管破損の模式図 (国回力S等さどによる)内経別院 さ15 内径に線られる。 下流に乱れが発生 |破操し高温高圧の水が一 |水蒸気となって噴出 一放水路へ冷却水 ビン

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

統計学の偏相関係数について自分の解釈があっているかの確認をしたいのですが、 こればかりは自力ではできないので確認をお願いしたいです。 (画像は参考にした教科書の内容です。ファイルサイズの問題で必要な情報をすべては載せられませんが一応貼ります。) この教科書の内容は ある人... 続きを読む

Gのデータに対して、yおよびxを戦りの像数から下引する次のような る8,備相関係数 のデータに対して,yおよびえを吸りの象数から下刊する次のような S くうか考えられ,それらの影響も限形的であれば、上の1次式のモデルの愛 SyS」 (間題A1.6)。 親がふえるこになる。また,もしこれらの変のうち採力国)が2次関数的 に移響する可能性がある場合には、当のほかにx=という4満日の変数 を予デルに加えておけば、 2次開数的な影響も上のような線格デルにより 分析ることができる。 コーつの重国帰をデルを考える。 -ッ pe ただし、 Sy S Sy S エ-dx p+る。 -のとき、最小2堀法によって求めた重回帰式は次のょうになる。 S, S1 S12 S,p いま去6のように1つの目的変数とp個の説明変数光認を に n個のデータ(数値)が与えられたとしよう. S1y S Sg Sp S= たたし。 表6 重回帰分析の場合のアータ 22 1 帰分析法 S S 日的変哉 明 数 S Sp Sp"Sp S. S 81式のいかをyおよびからあ,為,Xoの回帰が消去されたときの 偏相関係数(partial correlation coefficient)という。 テータ号 そしてS,は行列式Sの1行」列の余因了(行」列の要素を取り除いて作。 Sは式のSの2行2列2)余国子からさらに1行1列の余因子をと 1 『1 『1 T」 ったもの。 S はSの2行2列の余囚子からさらに1行+1引の余因子をと 2 エ以 た行列式に(一1}* をかけたもの)。 | 式からわかるように00式で小される偏相関係数は(a,る,…,ズ)の影響 を除いたyととの相関係数と考えることができる。同様にしてyとxj- っかもめ。 1,2,p)の間の偏相関係数を定識することができる。 また。式に小す行列式Sとその余因子を用いると、ル は次のよう! S , S. も同様に考える。 エ J= (-arュー+) , =(ddエ み) も書ける。(町E A1.7)。 Sie VS」Sa 51と同様にズ,海。, y からyの値を子測するとき、,た。, とりの 関係を示す一つの数式モデルを設定しなければならない、この数式モデル(予 第1式)を11のように与える,必は- , -…, e だけでは説明しきれない部 分の予測誤差を表す。 『122.p=ー こおくとき、変数とpの単相相関係数は次のように書ける。 S Sa, Saは行列式Sの1行1列, 2行2列,1行2列の余因子 去8に示すデータで、yおよびから,石のの国帰が消去されした 5aト ただし、 『121 -ー -4十aエ,サ角約」十, +山i-6 この式を、線形重回帰モデル(linear multiple regression model} と呼ぶ中 * Sas Ss 例7。 ただ。 ときの偏相関係数()を求めよ。 [解] 例6の解答の中に示す行列式Sと式より 回滑の場合(x,平面上のヵ個の点の集まりドに直線をあてはめたが、重回帰 1、 ( , Spー -1 場合には(, , y)の(ゆ+1)次元空間での の点の集まりに対してき次 S』 VS」S。 元超平面 S--(-は)(カー)。 『yト23- -6.941×10° V6171×10×2.011×10 0.623 をあてはめ、それによって説明変数の他x,あ から目的変数の値 を予測する。このときの誤差は式から去?のように表される。

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

これが全く分からないのですが教えていただけないでしょうか

問題:ロケットは、燃料を燃やしてできる燃焼ガスを高速度で噴射しながら加速する。 この加速の仕組み ロケットを本体と燃料からなる質点系として考えてみよう。ロケットは連続的に燃焼ガスを噴出して飛行 るが、ここでは初め At の間にどれだけ物理量が変化するか離散的に考え、後で連続極限 At →0 を取 ことにする。また、ロケットは直線的に運動しているとして1次元的に扱い、 ベクトル表記はしなくても良い 時刻[s]において質量 m(t) [kg] で速度 v(t) [m/s] で飛行しているロケットが、 「単位時間あたり質 b>0[kg/s] の一定の割合」で燃焼ガスを後方に「一定の大きさVの相対速度」で噴射しているとする。 ここでVはロケットと燃焼ガスの相対速度の大きさであり、ロケットの進行方向を正の方向とした時、 焼ガスの速度はv(t) -V で表すことができる。 短い時間 At の間にロケットは質量 bAt の燃焼ガスを後方に噴射しているので、 時刻t+ Atにはロ ケットの質量はm(t+ At) =D m(t) + Amになり(ただし燃焼ガスを噴射するので Am = -bAt < 0)、ロ ケットの速度は v(t+ At) =D v(t) + Avになるとする。 (注:この問題ではロケットは宇宙空間を飛んでいるとし、地表で働く一様な重力は考えなくて良い。) (1)燃料の噴射前後(時刻とt+ At の間)でこの質点系の運動量が保存することを式で表そう。 エンジンの中で 噴射するガスの 反作用で加速 燃料を燃やしてできる 燃焼ガスを噴射 物理学I(精機)第12回 レポート問題 1 問題(つづぎ): (2)(1)で得られた式に対し、 Amと Av は小さい量なので、 その積 AmAv = 0 という近似を用いることで、 m(t)Av + VAm%3D0 の関係が得られることを示せ。 (3) At の時間が経つ間のロケットの質量の変化は Am でのロケットの質量の平均の変化率は ーbAt <0 で与えられることから、 At の時間内 Am =DーDD<0 At と表現される。At →0 の極限を取ることでロケットの質量の変化を表す微分方程式を導け。 そして、 初期条件としてt3D0[s] でm(0) =D mo [kg] を与えることで、 初期条件を満たす特解 m(t) を求めよ。 ただし、この問題で扱う時間の範囲内ではロケットは内部の燃料を全て噴出するほど時間は経ってい ないとする。 (4)(2)で示した式を At で割って At → 0 の極限を取ることで、 速度vの変化を表す微分方程式を求めよ。 (5) ロケットがt=0[s] で静止していた(v(0) %3D 0)として、 (4)で求めた微分方程式の初期条件を満たす 特解 v(t) を求めよ。

回答募集中 回答数: 0