学年

教科

質問の種類

数学 大学生・専門学校生・社会人

このグラフの記述と説明を3つずつ自由に解答してください。 至急ですので、よろしくお願いします

9:59イ ll全』 webclass.edu.tuis.ac.jp 表13.4年創大学への進学率と18歳人口の推移 識人口(人 学率 |学率女||学率 計() 79 年 15 年 0 年 5532年 533年 3年 1,713.341 12239 1746.709 14 1114 12 111 24」 1 1521 145 117 23 25 24 231 25 6 S14年 S 1M1(SH) 17年 L S 111 195,7 14872 154| 145 1 11 100 年 年 15540年 S41)年 S42年 L1ES43) 1 S44) [70545) 915 年 4年 101 147657 2491231| 511 計 46 7 45 11』 2,426,802 」 205 220 247] 273 201 15 49 2.539,558 2133.508 147237 T 7 154 65 11145 41064 216 14 10| 114 974(549 1975(550) 1976(551) S52年 年 197554年 年 S年 1621.728 10 1542,04 121574] 150495 154186 127 126| 125| 122」 121 1221 122 221 264 21 21 T 121025 14 1556,578 150694| 12.7」 2,034 1116 2005425 2044.923 2041471 1150 10300 年 1 ) 244 M4,552年 1 0) 161年 1 S2年 年 H年 (H2年 1 年 1 H 386 342 53 137 125| 265 216 144 2471 246 41 14 45 352 147」 111 171 190 10| 4年 4 0 3011 4 年 H 1112 247 T000| 1622.198 154520」 151094」 IS 502.7111 1444 141040 145471| 1325.20] 171| HB)年 197H 413 434 449 OH9年 OH10年 H1年 20000H12)1 2001H13)年 02H14年 200H11年 04H年 H17年 2006H 2007H1 200H20 2009H21年 2010H22 2011H23)年 1309 012H24年 1102I 2013H25年 260 275 349 364 241 151 271 71 05] 11 470 3 513 521 535 52 52 3681 85 424 442 |55 |2 11242| 1213.709 1,199,309 2 509] 510] 442 564 540 556 540 45 1227,736| ※1.4年制大学は学部のみ、短期大学は本科のみ、進学率は通年度高卒生を含む ※2 18歳人口の定義は表11と同じ く出典> 文部映計要覧昭和31~41,42~平成13年版 学校基本調査報告書昭和40年雄 文部科学統計要平成14~25年版 『千人) 連学率-男 男金計 連学率 150 10時 人口 (人) 10 車 500 図13.4年制大学への進学率と18歳人口の推移 く

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

高校物理力学の問題です。 問5以降の問題で、物体1と物体2がどのような運動をするのかを含めて解説して頂きたいです。

物 理 I 図のように,点0を中心とする半径Rの円周の4分の1を断面にもつ中空円筒 と水平面を点Bで滑らかに接続した。水平面からの高さがんとなる円筒面上の点 Aから,大きさの無視できる質量 mの物体1を静かに放す。 水平面上の点Cには 大きさの無視できる質量 mの物体2を置き, これに質量の無視できるばね定数ん のばねを取り付けた。点0, 点A,点Bおよび点Cは同一の鉛直面内にあり, 物 体はすべてこの鉛直面内で運動するものとする。 また, ばねはこの鉛直面内で水平 方向にのみ伸縮するものとする。物体1と円筒面および水平面との摩擦は無視して よい。重力加速度の大きさをgとする。解答は全て解答用紙の所定の欄に記入せ よ。 0 物体1 R A h 物体2 OO ばね C B はじめ,物体2は点Cで水平面に固定されているものとする。点Aからすべり 始めた物体1は, 点Bを通過した後,ばねの右端に到達し,ばねを押し縮めた。 その後,物体1はばねの復元力により押し戻され, ばねが自然長となったときにば ねから離れた。このとき以下の問いに答えよ。 解答には, g, h, k, mおよびRの うち必要なものを用いよ。 ◇M4(436-33)

回答募集中 回答数: 0
経営経済学 大学生・専門学校生・社会人

大学の ミクロ経済学、マクロ経済学がわかりません💦 課題を教えてください💦

21:45 mm 4GE ) 完了 ミクロA 第3回 (32 / 75) め o ぁ PVPT3 別曲線と予算線が交わる点下と Gでは、その点よりも消費者にとって望ましく、かつ予算集合 る ず見つかります。したがって、点F と G で効用を最大化していろことにならないことに なります。無差別曲線と子算線が接する点Hは也算集合にない、すなわち所得をオーバーした消費計 画であるため、消費者は選択することが出来ません。消費者は無差別曲線と予算線が接している点 で効用を最大化しています。このように、消費者が予算制約の下で効用を最大化している県を最適消 費と呼ぶ。最適消費のことを一般的に需愛といいます。従って最適消費の集まりが革要曲線となりま す。 最適消費はどのような条件を満たしているのでしょうか。最適消費は予算線上にある (所得は使い 切っている) 。最適消費では E 点における無差別曲線の傾きの絶対値 (限界代特率) と予算線の傾き の絶対値 (価格比) が等しくなっています。 別曲線と務算線が交わる 点では限界代符率が価格比を上回っています。また、G 点では価格 比が限界代圭率を上回っています。例えば、 点における無差別曲線の接線の傾きの絶対徒を 2 とし ましょう。みかんの値段が 100 円、リンゴの値段が 100 円とすると、A さんはみかんを 100 円で売る と、1個 100 円のりんごが 1 個しか手に入りませんが、下 点ではみかんの数便が少ないため、A さんと Bさんでみかんとりんごを交換したとすると、A さんはみかんを B さんに 1 個渡せば、B さんからリ ンゴを2個貰うことが出来ます。そのため、みかんを市場に売るより、B さんとみかんとりんごの交 換をする方 は上がる なります。 きらに、G点では、 く、りんごは少ないため、B さんとみかんとりんごを交換しように も、みかん 1 個に対して B さんはりんごを 0.8 個しかくれません。そのため、市場でみかんを売って、 を買った方が得ということになります。 このように、束では、限界代符率の方が価格比を上回り、G 点では価格比の方が限界代圭率を上 回っており、予算線と無差別曲線が交わっていることから、満足を最大化していません。 実際、F C点、G 京は同じ無差別曲線上 Uoにあり、満足が同じものとなっています。C点は予算線 AB 上にな いことから、所得 1000 円を使い切っていないことになります。そのため、C 点を通る無差別曲線 Do より、上の面積 CGEF の部分は、C 点より満足度が高くなり、F束やG束より、お金を少なく使いな がらも、満足がより高いものとなっています。 したがって、 消費者が予算制約のもと、満邊を最大化 させてでいる点は選点の予算線と無差別曲線 が接しており、 は、 限界代替率と価格比が等しく なっていま 図 5 では横軸にみかんXX財の数、縦電にリンゴY財の数を測っています。たとえば、g記はe点と 同じ無基別曲線 Ug 上にあるものの、巴算線より右上にあり、少費不可能な消費計画です。 この場合、 AX (Aはデルタと読み、変化征を表しています) だけXの数を滅らして、リンゴの数をAY だけ増や すことで、 満足を変えずに消費可能となります。このように了予算線より右上の点でも、e点と同じ舞差 な点はみかんとりんごの配分を変えることで消可能となります。 まとめると、消費者が務算制約下で効用を最大化している点は、巴算線と無差別曲線の接線が一至 するような点eであり、そこでは限界代守率と価格比が等しくなっています。 今回の図は一部、川 裕三著 租税の基礎研究』 を参考しています。 課題 みかんの価格が 300 円、リンゴの価格が 200 円、所得 3000 円の予算線と最適消井を図に摘いてみて ください。

回答募集中 回答数: 0