学年

教科

質問の種類

情報 大学生・専門学校生・社会人

2進数に関するご質問です なぜ「111」が「マイナス1」に、「110」が「マイナス2」になるのかがわかりません。 負の数を表す2進数を10進数に戻す方法がわかりません よろしくお願いします🙇🏻‍♀️

問 3 (FE-H30-S-01) 111 110 |101 イ ある整数値を負数を2の補数で表現する2進表記法で表すと最下位2ビッ りに関する記述として, 適切なものはどれか。 ここで,除算の商は、絶対 トは “11” であった。 10進表記法の下で,その整数値を4で割ったときの余 値の小数点以下を切り捨てるものとする。 解説 具体例を考えるとわかりやすいので、下記の 「3ビットの2進数」の例を想定します。 100 ア その整数値が正ならば3 ウ その整数値が負ならば3 → マイナス1 (▼) → マイナス2 → マイナス3 → マイナス4 イ その整数値が負ならば-3 エ その整数値の正負にかかわらず 0 2011 →プラス3 (▲) 2010 → プラス2 2001 → プラス1 1000 →ゼロ 問題文の 「負数を2の補数で表現する2進表記法で表すと最下位2ビットは “11”」 であるケースは、 上記の です。 それぞれについて、問題文の<10進表記法の下で, その整数値を4で割った 除算の商は、絶対値の小数点以下を切り捨てるものとする>を計 算して、各選択肢に当てはめてみます。 ときの余り、(中略) ここで, ア その整数値が正ならば3 マイナス1 (▼) 上記の条件に該当しません。 プラス3 (▲) 3÷4=0.75 上記★★の下線部より、0.75の小数点以下が切り捨てられて、商 は「0」、余りは「3」 <0×4+3=3> です。 したがって、本選択肢が正解です。 ●その整数値が負ならば-3 マイナス1 商は「0」、 プラス3(▲) 上記の条件に該当しません。 ・-1÷4=-0.25 上記の下線部より、 0.25の小数点以下が切り捨てられて、 ◆余りは「-1」 <0×4+ (-1)=-1>です。 したがって、誤りです。 ●その整数値が負ならば3 上記◆の下線部は、上記の下線部と同じですので、上記 工 その整数値の正負にかかわらず0 の下線部より、本選択肢は誤りです。 上記ア~ウの各選択肢で検討したように、マイナス1(▼)とプラス3(▲)の両方とも、余りが「0」 になることはありません。

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

5つ問題があります。解答がわかる方お願いします。

8 課題 以下の内容を読み進めて、5つの問題に答えてください。 計算の際は、電卓やRを使っていただいて構いません。 ある選挙において, 候補者は二人(AさんとBさんとします) で, 投票者の全員がどちらかに投票しているとします。話 を聞いた人をn, そのうちAさんに投票する人をk, Aさんの得票率をRとすると,以下のような確率モデルが書けます。 \[ P(X=k) = 0_n C_k R^k (1-R)^{n-k} \] 1. ここから 得票率Rが50%の時, 10人に話を聞いて (n=10), A投票する人が0人 (k=0) という場合が起こる確率を求 めてください。 2.Rとnは同じでAに投票する人が10人の時の確率を求めてください。 3. Rとnは同じでAに投票する人が5人の時の確率を求めてください。 上記の確率 市は二項分 れ、 平均 \(np\), 分散\(np (1-p)\) です。 心極限定理からnが十分 分布に従うことがわかっています。 正規分布は以下のように範囲ごとに確率が決まっていま す。 ・標準偏差(\(\sigma\)), 平均 (\(\mu\)) ●1シグマ範囲 \ (\mu\sigma \le X \le \mu + \sigma\) 確率68.3% ■2シグマ範囲 \(\mu - 2\sigma \le X \le \mu + 2\sigma\) 確率 95.4% 3シグマ範囲 \ (\mu-3\sigma \le X \le \mu + 3\sigma\) 確率 99.7% • \(\mu -1.96\sigma \le X \le \mu +1.96\sigma\) の 範囲が確率95%です 3 a a 9 これを使うと、真の得票率Rは95%の確率で \[ r - 1.96 \sqrt(\frac{r(1-r)}{n}}\le R \ler + 1.96\sqrt {\frac{r(1-r)}{n}} \] に含まれると計算できます (詳しい計算は省略します)。 大きい時、 1 4.今,500人に出口調査をして、 Aの得票率が58%だったとします。 この時、真の得票率Rはどんな範囲に入ります か? 5. この計算結果から、 選挙の結果について言えることはなんですか?

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

5つ問題があります。解答がわかる方お願いします

8 課題 以下の内容を読み進めて、5つの問題に答えてください。 計算の際は、電卓やRを使っていただいて構いません。 ある選挙において, 候補者は二人 (AさんとBさんとします) で, 投票者の全員がどちらかに投票しているとします。 話 を聞いた人をn, そのうちAさんに投票する人をk, Aさんの得票率をRとすると,以下のような確率モデルが書けます。 \[ P(X=k) = 0_n C_k R^k(1-R)^{n-k} \] 1. ここから 得票率Rが50%の時, 10人に話を聞いて (n=10), A投票する人が0人(k=0) という場合が起こる確率を求 めてください。 2.Rとnは同じでAに投票する人が10人の時の確率を求めてください。 3. Rとnは同じでAに投票する人が5人の時の確率を求めてください。 上記の確率分布は二項分布と呼ばれ、平均 \(np\), 分散 \ (np (1-p)\) です。 中心極限定理からnが十分に大きい時, 正規 分布に従うことがわかっています。 正規分布は以下のように範囲ごとに確率が決まっていま す。 ・標準偏差 (\(\sigma\)) 平均 (\(\mu\)) 1シグマ範囲 \(\mu\sigma \le X \le \mu + \sigma\) 確率68.3% 2シグマ範囲 \ (\mu-2\sigma \le X \le \mu + 2\sigma\) 確率 95.4% 3シグマ範囲 \ (\mu-3\sigma \le X \le \mu + 3\sigma\) 確率99.7% • \(\mu - 1.96\sigma \le X \le \mu +1.96\sigma\) の 範囲が確率95%です J 3 a 8 これを使うと、真の得票率Rは95%の確率で \[r-1.96 \sqrt{\frac{r(1-r)}{n}}\le R \ler + 1.96\sqrt {\frac{r(1-r)){n}} \] に含まれると計算できます (詳しい計算は省略します)。 4.今,500人に出口調査をして、 Aの得票率が58%だったとします。 この時、真の得票率Rはどんな範囲に入ります か? 5. この計算結果から、 選挙の結果について言えることはなんですか?

回答募集中 回答数: 0