学年

教科

質問の種類

経営経済学 大学生・専門学校生・社会人

日商簿記2級 外貨換算計算 1枚目は問題です。 2枚目の赤線マーカーに引いたところについて、質問です。解答(3枚目)では、(102/ドル−105/ドル)×(12000ドル−10000ドル)の式から、△6000という数字が導き出せるとありますが、12000と10000という... 続きを読む

問題11-4 ★★★ 以下の取引について(1)仕訳を示し,(2)解答欄に示した勘定口座の記入を完成させなさい。なお,商品 売買取引はすべて掛けで行っており、売上原価対立法により記帳している。 また,商品の払出単価は移 動平均法により算出している。 〈指定勘定科目> 現 買掛 金 当座預金 売 売掛金 上 売上原価 金価 商品評価損 為替差損益 (取引) x2年3月1日 商品Aの前月繰越額 数量800個 単価@1,200円 商棚 ロ 棚卸減耗損 x2年3月8日 x2年3月10日 商品A1,200個を@10ドルで輸入した。 当日の為替相場は1ドルあたり105円であった。 国内の得意先に商品A1,500個を@2,000円で販売した。 x2年3月25日 3月8日に計上した買掛金のうち10,000ドルについて小切手を振り出して支払った。 当日の為替相場は1ドルあたり103円であった。 x2年3月31日 決算となる。 実地棚卸を行ったところ, 商品Aの実地棚卸数量は480個であった。 決算日の為替相場は1ドルあたり102円であった。 84 78

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

(2)の考え方を教えていただきたいです。 内積0を使うのかな?という検討はつきましたが、条件で与えられているベクトルをどのように扱えばいいか分からなくなってしまいました。

第1問 R3を3次元実列ベクトル全体の集合, I 3×3 を3×3 の実行列全体の集合とする. 1, 12, 73 ∈ R3は一次独立な単位長ベクトル, 4∈R3は n1, 2, ng と平行でない単位長ベクトルとす る.また,正方行列 A, B を 4 A= - 2 B = Σnin T \\n-n i=1 とする.ここで, XT, æT はそれぞれ行列 Xの転置行列とベクトルæの転置ベクトルを表 す。 以下の問いに答えよ。 (1)Aの階数が3となるような 4 に関する条件を求めよ. (2) 3次元ユークリッド空間において以下の3つの条件を満たす4つの平面 II = {æ ∈ R3 | new - d = 0} (d は実数, i = 1, 2, 3, 4) を考える (i) A の階数は3であ る, (ii) Ω = {æ ∈R3 | new-d≥0, i = 1, 2, 3, 4} が空集合ではない, (iii) II (i = 1, 2, 3, 4)に接する球C (⊂ Ω) が存在する. このときCの中心の位置ベクト ルをベクトルuER を用いて A-1u の形で表す. d (i = 1, 2, 3, 4)を用いてuを 表せ. (3) B が正定値対称行列であることを示せ. (4)4つの平面 {æ∈R3|nex-d=0} (dは実数, i = 1, 2, 3, 4) への距離の2乗和が 最小となる点P を考える. Pの位置ベクトルをベクトルver を用いて B-1 の形 で表す. ni, di (i = 1, 2, 3, 4) を用いて”を表せ. (5)13において点 Qi (位置ベクトルをER3とする)を通りに平行な直線をんとす る(i = 1, 2, 3). 任意の点R (位置ベクトルをy∈ とする) をんに直交射影した 点を R; とする.R の位置ベクトルを行列 Wi∈ R 3×3 を用いて y - Wi(y-æž) と表 す. I∈IR 3×3 を単位行列とする. (a) と I を用いて W を表せ. (b) WWWż を示せ. = (c)平面Σ = {ER3 | afx = b} を考える (a∈3は非零ベクトル, b は実数). 点SE∑はL, Iz, 13 への距離の2乗和を最小にする点である.n1, n2, n3 が互 いに直交するとき,Sの位置ベクトルをベクトルw∈3 を用いて aa ab I - w+ T ara の形で表す.ただし, は a,bには依存しないものとする. w を Wi, πi (i = 1, 2, 3) を用いて表せ. p. 1

回答募集中 回答数: 0
生物 大学生・専門学校生・社会人

問2のやり方教えてください😓

思考 102.mRNAの合成 次の文章を読み, 下の各問いに答えよ。 1つの遺伝子から複数のAAをつくるプランによりのように 子Xから mRNA (X-1)と mRNA (X-2)の2種類のmRNA がつくられ,それぞれが翻訳 されることによりタンパク質 X-1とタンパク質 X-2がつくられる。 □1 エキソン1 イントロン1 エキソン2 イントロン 2 エキソン3 イントロン3 エキソン4 イントロン4 エキソン5 て 遺伝子X エキソン1 エキソン エキソン 3 ソン タンパク質 X-1 mRNA (X-1) エキソン1 エキソン2 エキソン エン - タンパク質 X-2 mRNA (X-2) 728 図 1 F 問1. 図1のようなスプライシングの名称を答えよ。 問2. 図1のエキソン3,4の長さがそれぞれ79, 72ヌクレオチドであり, エキソン2と イントロン2の境界領域, イントロン4とエキソン5の境界領域が,図2のような配列 であるとする。タンパク質 X-1とタンパク質X-2のアミノ酸の数を比較したとき どちらのタンパク質のアミノ酸数が何個多いか答えよ。 ただし, タンパク質 X-1とタ ンパク質 X-2 のどちらもエキソン5に存在する終止コドンまで翻訳されたものとする。 また,終止コドンはUAA, UAG, UGA の3種類が存在する。 -TCACATAGTTAAAAG| GTA- -AGTGTATCAATTTTC CAT- エキソン2 --3' ■センス鎖 -5' アンチセンス鎖 イントロン 2 5′--- -CAG| GTTTAAACCCGTAAAGTAG- -GTC CAAATTTGGGCATTTCATC-----5′ イントロン 4 センス鎖 アンチセンス鎖 エキソン 5 図2 (20. 富山大改題) ヒント 問2. 「エキソン5に存在する終止コドンまで翻訳された」 とあるので, エキソン2で終止コドンが出現する ようなコドンの読み方は排除して考える。 また, mRNA (X-1) mRNA (X-2)ではエキソン3とエキゾ ン4の塩基数が異なるため, エキソン5のどの終止コドンで N

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

この問題を教えて頂けると助かります。 2枚目はそれまでの解答です。

III page-4 以下の文章の空欄に当てはまる数値または選択肢をマークせよ。 なお, 37 には 「① +, ② ③ 値が0なのでどちらでもない」 のいずれかを選択して解答し, 46 には 「①保存力である, ② 保存力でない」 のいずれかを選択して解答せよ。 単位が明記されていない物理量はすべてSI単位の 適切な基本単位もしくは基本単位の組み合わせによる組立単位を伴っているものとする。 質量2kgの物体が,軸上を運動している。 物体は時刻t=0において,r= =10の位置に静止して いたとする。 この物体は, ポテンシャルが であるような保存力F を受けている。 U(z)=4z2-48z +144, はじめに, 物体に保存力Fのみが作用している場合を考えよう。 この物体の運動方程式を書くと, dx dt2 37 38 (x- 39 となる。 X =æ- 39 と置いて, 運動方程式を書き換え, Xに対する一般解を求めると, A, Bを任 意の定数として X=z-39 = Acos 40t + B sin 40t, となり, 初期条件を用いることでAおよびBがA=41,B = 42 と求まる。この結果等から, この 物体は 43 <z 10の範囲を運動することがわかる。 また, x=9の位置を物体が通過する瞬間の 運動エネルギーはK= 44 45 である。 次に,Fに加えて, 物体に速度と逆方向に, 大きさが一定の力fが加わる場合を考える。ここで, |f| = 4とする。この力は46 この物体はt=0においての負方向に動き出した後,æ = 47の 位置で一旦停止し, 軸の正方向に向かって運動しだす。 物体があるところで一旦停止した場合, |F|>4であれば保存力Fによって物体は再度動き出し, F≤4であれば静止摩擦力によってその位 置に静止したまま動かないものとする。 物体はt=0で動き出した後に48 回だけ運動の方向を反転 させて軸上を行き来した後, 最終的にはヱ = 49 の位置で静止することになる。

回答募集中 回答数: 0