学年

教科

質問の種類

化学 大学生・専門学校生・社会人

高分子の組成比率を求める問題なのですが、講義のスライドに載せられていた求め方が一貫性が無さすぎてどう解けばいいか分かりません。 3つのうちの1番上のもののAの比率の出し方、3つのうちの1番下のもののAの比率の出し方を解説していただきたいです。 2つ目が課題なのですが、これも... 続きを読む

5・2 ビニルポリマーの立体規則性の表示法 α 置換基 B-CH₂ n-ad () ベルヌーイ 確 ad (偶数) * ベルヌーイ 確 * triad isotactic, mm (I) heterotactic, mr (H) syndiotactic,rr (S) ++ (1-P)² 2P (1-P) dyad meso, (f) racemo,(s) tetrad立体規則性により周囲の環境が異なる P (1-P) pentad mmmm mmm mmmr ||||||||-2P(1-P) mmr H2P(1-P) b rmmr |||||||||-2 P³(1-P)² rmr P(1-P)² mmrm 2P(1-P) mrm P(1-P) b mmrr | 2P(1-P) rrm 2P(1-P) rmrm |||||| 2 P³(1-P) rrr ||||(1-8) rmrr ||||||||- 2P(1-P)³ mrrm rrrm |||||||-2P(1-P) 高分子合成化学 p.103 rrrr ||||||(1-P)* A B ポリ塩化 CI ポリイソブチレン CH Ħ CH3 H CH3 ビニリデン CH₂ C C C C C C I H CI H 01 CH3 H CH3 a b C (A=91 mol %) 164H 36H 54H 200 = 54 x:Aの mol %) 76H 120H ai a 3.8 3.6 63H (A=63 mol %) M 126H 130H a₁AAAA az BAAA(AAAB) 2 6(1-x) モル分率 as BAAB bi AABA(ABAA) ✗= (100-9)/100 = 0.91 bz BABA(ABAB) bs: AABB(BBAA) b: BABB(BBAB) C₁ ABA 左の共重合体の組成比を計 ABB(BBA)算せよ cs: BBB ||233H b領域の積分値の半分はA由来で、 半分はB由来 a: az as bi ba ba b C1 C2 C3 4 2 $ (ppm) 126/2 233 63+126/2 2x 2(1-x-y) 6(1-x)+2y 1.5ppmにピークを持つBのモル分率をy とすると、 b領域のBのモル分率は (1-x-y) 図5-15 塩化ビニリデン (A) - イソブチレン (B) 共重合体ならびに両単独 重合体の1H-NMR スペクトル (60 MHz S.Cl溶液 130°C) 16

回答募集中 回答数: 0
化学 大学生・専門学校生・社会人

bの問題で、解答の最後の1行の意味が分からないので教えて欲しいです

問4 次の文章を読み, 後の問い (ab) に答えよ。 Bがコックでつながれている。 コックを閉じた状態で, 容器A には, 一酸化炭 容積が2.0Lの容器Aと, ピストン付きで容積を変化させることのできる容器 素 CO を 27℃で 1.0×10°Pa になるように封入した。また,容器 B には、容積 が 1.0L になる位置でピストンを固定した状態で,酸素 O2 を 27℃で3.0×10 Paになるように封入した。 これを状態Ⅰ とする (図3)。 b状態Iからコックを開いて, 容器Bのピストンを完全に押し込んで、容器 B内の気体をすべて容器 Aに移したのち, 再びコックを閉じた。 次に, 容器 A内の気体に点火し, COを完全に燃焼させた。 燃焼後, 温度を27℃に戻し たとき、容器 A内の圧力は何Pa になるか。 最も適当な数値を,次の①~⑥の うちから一つ選べ。 27 Pa 容器A コック 容器 B Coo O2 ピストン 1.0×105 Pa 3.0×10 Pa Joa 2.0L 1.0L 図3 状態 Iにおける容器 A, B内の様子 a 状態Ⅰから, ピストンを固定したままコックを開いて, 十分な時間放置した。 このとき、容器内の圧力は何 Pa になるか。 最も適当な数値を、次の①~⑥の うちから一つ選べ。 ただし, 容器内の温度は27℃に保たれているものとする。 26 Pa ① 1.0×105 (2) 1.7×105 ③ 2.0 × 105 2.3×105 3.0×105 ⑥ 4.0 × 105 ① 1.0×105 ④ 2.5×105 ② 1.5×105 2.0×105 3.0×105 ⑥ 3.5 × 105 -33- 20

回答募集中 回答数: 0
公務員試験 大学生・専門学校生・社会人

わかる【解放のテクニック】部分の②の甲一人何時間働いたかを確かめる計算式で1-5分の3となっているのですが、なぜ5分の3を引くのでしょうか?具体的に教えて頂けると助かります。

p.114、22日目:仕事算 基本公式に数値を入れて計算する 1日 (時間) 当たりの仕事量 = 所要日数(時間) ●仕事量=1日(時間) 当たりの 仕事量×働いた日数(時間) ●全体の仕事日数 1 = わかる! 解法のテクニック 11人の1時間当たりの仕事量を計算する 基本公式を利用して、 1時間当たりの仕事量== 所要日数(時間) 仕事全体の量を1とすると、1人の1時間当たりの仕事量は 甲 12/21丙115 20 ② 3人での1時間当たりの仕事量を計算する 3人一緒に働くと1時間当たりの仕事量は 210+12+15=1/13 ③全体の仕事時間を計算する 分母を最小公倍数に ここでは分母を60に揃える 基本公式を利用して、全体の仕事時間=1+各人1時間の仕事量の和解答 よって、かかる時間は1÷- = 5時間 5 各人の1日当たりの仕事量の和 ※全体の量から考える場合、 分子が1となる。 残りの量から考 える場合は、1を残りの仕事量に置き換えて計算する。 (2) 3人で3時間働いた後、 残りを甲1人で行った。 甲1人では何時間働きました か。 A 3時間 B 4時間 C 5時間 D 6時間 E 7時間 F 8時間 わかる! 解法のテクニック 例題 1 13人で3時間働いたときの仕事量を計算 制限時間: 150 秒 3人で3時間働いたときの仕事量は×3時間= ある仕事をするのに甲1人では20時間、 乙1人では12時間、 丙1人では15時間か かる。 (1)3人同時に働いたら、 仕事は何時間で終わりますか。 A 3時間 B 4時間 C 5時間 D 6時間 E 7時間 F 8時間 甲1人で行ったのは1 -号=号 ② 甲1人で行った時間を計算 仕事量 基本公式を応用して、 残りの仕事時間=残りの仕事量 甲1時間の仕事量 だから、10+20=8時間 解答 2番目の公式の応用

未解決 回答数: 1
工学 大学生・専門学校生・社会人

⑷ばんがわかりません。教えて欲しいです

入り [2. 材料力学〕 1 下図に示すように、1本の敷御製棒材 PRが一端を体にRでピン結合され、 他端をPで 剛体棒 OQにピン結合されている。 OP およびORの長さを1.4mとし、秋鋼製棒材 PR の横断面積をA=1.2cm²とする。また、壁OR(y軸)とOQx軸)とのなす角は90℃とする。 点Qに荷重 W=15kN が作用したとき次の設問 (1)~(4)に答えよ。 R 0 Q e W 3l 2 13 (1) 軟鋼の縦弾性係数Fとして最も近い値を下記の [数値群] から選び、その番号を解答 用紙の解答欄 【A】 にマークせよ。 [数値群] 単位:GPa ① 80 ② 106 ③ 150 ④206 ⑤ 240 (2) 軟鋼製棒材 PRに作用する張力Tを求めるための式で正しいものを下記の 〔数式群] か ら選び、その番号を解答用紙の解答欄 【B】 にマークせよ。 [数式群] ① W 2 W W √3W 3W ② ③ (5) 3 √2 √2 「2 IL AE (3) 軟鋼製棒材 PR の伸びを求めるための式で正しいものを下記の [数式群] から選び、 その番号を解答用紙の解答欄 【C】 にマークせよ。 [ 数式群] ◎JMDIA We We 2We 3We ① ② ③ ⑤ 2AE √3AE AE AE √3 We AE -2- 点 Qy軸方向変位y を計算し、 その答に最も近い値を下記の数値群〕 から選び、 その番号を解答用紙の解答欄 【D】 にマークせよ。 [数値群] 単位:mm ① 3.4 54 ③ 6.5 ④8.3 ⑤ 9.4 3wX A = 2.5mm AE >C0545=1.31mm 3×15000×1,4 1.2×104 × 206GRα 0.656 0.909 -3- ◎JMDIA

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

この問題、判別式だけでできないのはなんでですか??

Think 例題 35 無理関数のグラフと直線 **** 関数 y=√2x-1 ……………① のグラフと直線 y=x+k •••••• ② との共有 点の個数を調べよ. ただし, kは実数の定数とする. 考え方 まず,無理関数 y=√2x-1 のグラフをかく. 次に,k の変化に応じて, 直線を動かして考える. 直線を上から下に平行移動するとき, 次の2つに注意 すれば, 共有点の個数の変化がつかみやすくなる. ① 曲線 ①と直線 ②が接するときのkの値 y=√2x-1 ...固定 y=x+k 変動 第2章 34 ②] 直線 ②が曲線 ①の端点 (20) を通るときのん の値 つまり、 ①を境として共有点の個数が 0個 1個 2個 ②を境として共有点の個数が 2個→1個 y=v2x-1 とそれぞれ変化する. 解答 ①のグラフは右の図のように なる. y4 まず①②のグラフが接す るときのんの値を求める. ①②より, √2x-1=x+k 両辺を2乗すると, Ø 1 1 x 2x-1=(x+k)? より, ①のグラフと数本の適 当な ② のグラフをかく. y=/20 1/2(x-1)より。 ①のグラフは y=√2x のグラフを 2 x2+2(k-1)x+k+1= 0 x 軸方向に だけ平行 移動したもの この方程式の判別式をDとすると, 重解をもつから, D 1=(k-1)-(k+1)=-2k=0より, k=0 4 次に,直線 ②が点 (20) を通るときのkの値を求める。 10/12th より k=-1/12/ 0= |接する重解をもつ ⇔D=0 ②にx=12, y=0を 代入する. 以上より, ① ② のグラフの共有点の個数は, k>0 のとき, グラフで確認する. 0個 kの値の減少により, <-12, k=0 のとき, 1個 ②は下方に平行移動す る. 1/2sk<0 のとき 2個 Focus 共有点の個数はグラフが接する場合をまず考える 練習 35 関数 y= 2x+3 +3 のグラフと直線 y=ax +2 との共有点の個数を調べよ. ** ただし, αは実数の定数とする. p.994

未解決 回答数: 0