学年

教科

質問の種類

化学 大学生・専門学校生・社会人

よろしくお願いします。

1) 次のうちどれが疎水性物質か。1つ選べ。 1紙 2食塩 3ワックス 4 糖 2) ある湖のpHを測定したところ、 4.0であった。 この湖の水素イオン濃度はいくらか。 3) ピザ1切れは500kcalに相当する。 もし、このピザを燃やしてその全ての熱で50Lの冷水を温め たとすれば、 水の温度はおよそ何度上昇するか。 ただし、 1Lの冷水はほぼ1kgである。 4) 硫黄の原子番号は16である。 硫黄は水素と共有結合を作り、 硫化水素という化合物を生成す る。この化合物の分子式はどれか。1つ選べ。 1 HS 2H2S 3 HS2 4 H4S 5) 次の反応式で、 左辺の全ての原子が生成物に対応するように、 計数を記入しなさい。 C6H12O6 ( __)C2H6O + (CO2 6) 不飽和脂肪に関して正しいのはどれか。1つ選べ。 1植物よりも動物で見られる 2 その脂肪酸の炭化水素鎖に二重結合がある 3 一般に室温で固化する 4 同じ炭素数の飽和脂肪より水素が多い 7) DNAを分解する酵素はヌクレオチドをつないでいる共有結合を加水分解する。 この酵素で処理 するとDNAはどうなるか。 1つ選べ。 1二重らせんの2本鎖が分離する 2 ポリヌクレオチド骨格のホスホジエステル結合が切断される 3 デオキシリボースよりピリミジン塩基が切断される 4 デオキシリボースより全ての塩基が切断される

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

位置関係の問題です。途中までは分かるのですが、何故三角形AESと三角形MDSが共に二等辺三角形だとわかるのでしょうか…?教えて頂きたいです🙇🏻‍♀️🙇🏻‍♀️

15 04 位置関係 ② 方角を考慮して図を描く! 頻出度 ★★★☆☆ 重要度★★★☆☆ コスパ★★★☆☆ 方角を考慮した位置関係の問題で、 ほとんどの場合、 上を北とするなど方角を 決めて図を描きます。このタイプの問題は、距離(長さ)の条件から図形を考 えるものが多く、三平方の定理や相似から求めるなど、 数的推理の要素が大き いです。 T_PLAY1 方角と距離の条件から図を描く問題 XX 2X 3X 警視庁Ⅰ類 2011 A~Fの家と駅の位置関係について、次のア~オのことが分かっている。 Aの家の8km 真南にBの家があり、AとBの家を結ぶ線分上に駅がある。 Cの家はBの家の真東にある。 ウ Dの家はCの家の1km 真北にあり、Dの家から北西に進むと駅を通り Eの家に着く。 .Eの家はAの家の2km 真西にある。 .Fの家は駅の真東、かつ、Dの家の北東にある。 以上から判断して、確実にいえるのはどれか。 1.Aの家から駅までの距離は2.5kmである。 2.Bの家から駅までの距離は5km である。 3.Cの家から駅までの距離は√74kmである。 4.Dの家から駅までの距離は4√2kmである。 5.Fの家から駅までの距離は10kmである。 上を北方向として図を描こう! まずは、誰かの家を基準として、そこ につなげるんだ。距離が示されている条件ア, ウエに着目してみて! 方角の条件がありますので、上を北として地図を描くように位置関係を図に します。 方角と距離がともに示されている条件ア,ウエに着目すると、アとエには Aの家が共通していますので、これらを組み合わせて図1のようになります。 位置関係 ②

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

位置関係の問題です。途中までは分かるのですが、何故三角形AESと三角形MDSが共に二等辺三角形だと判断できるのかが分かりません。これはどこからそう考えてるのでしょうか…?どなたか教えて頂けますでしょうか🙇🏻‍♀️🙇🏻‍♀️

が確 かり、 ます。 13 04 位置関係 ② 方角を考慮して図を描く! 頻出度 ★★★☆☆ 重要度★★★☆☆ コスパ★★★☆☆ 方角を考慮した位置関係の問題で、 ほとんどの場合、 上を北とするなど方角を 決めて図を描きます。 このタイプの問題は、距離 (長さ) の条件から図形を考 えるものが多く、 三平方の定理や相似から求めるなど、 数的推理の要素が大き いです。 PLAY1 方角と距離の条件から図を描く問題 警視庁Ⅰ類 2011 A~Fの家と駅の位置関係について、次のア~オのことが分かっている。 ア.Aの家の8km 真南にBの家があり、AとBの家を結ぶ線分上に駅がある。 イ.Cの家はBの家の真東にある。 ウ.Dの家はCの家の1km 真北にあり、Dの家から北西に進むと駅を通り Eの家に着く。 エ.Eの家はAの家の2km 真西にある。 .Fの家は駅の真東、かつ、Dの家の北東にある。 以上から判断して、確実にいえるのはどれか。 1.Aの家から駅までの距離は2.5kmである。 2.Bの家から駅までの距離は5km である。 3.Cの家から駅までの距離は74kmである。 4.Dの家から駅までの距離は4√2km である。 5.Fの家から駅までの距離は10kmである。 F 上を北方向として図を描こう! まずは、誰かの家を基準として、そこ につなげるんだ。距離が示されている条件ア, ウエに着目してみて! 方角の条件がありますので、上を北として地図を描くように位置関係を図に します。 方角と距離がともに示されている条件ア, ウ, エに着目すると、 アとエには Aの家が共通していますので、これらを組み合わせて図1のようになります。

回答募集中 回答数: 0
TOEIC・英語 大学生・専門学校生・社会人

分からないので教えて欲しいです🙇‍♀️

Entrance Exam 否定表現 1. almost 2. I( 1()に入れる最も適切な語句を1~4から選びなさい。 1. I don't think David would make a good leader because he can ( difficult circumstances and tends to give up too quickly. 2. extremely 3. hardly ) go to karaoke, I go only once or twice a year. ) be expected to act honorably in 4. neither (明治大) (芝浦工業大 4. never 1. often 3. Unfortunately, ( seldom ) of the 1. a few 2. few 3. ever passengers escaped injury. 3. many (大阪学院大 推) 4. much 4. ( ) children are born with musical talent. (日本大) 1. none of 2. not all. 3. not every 4. no one 5. ( 2. No 1. as far as 2. far from ) of the workers accepted the director's proposal to cut bonuses. 1. Not 6. The future of English society looked ( 7. I didn't like the food at that restaurant. It was (. (東海大 3. Never ) promising in the 1840s. None (立命館大) 3. for far 4. too far ) delicious. (福岡大) 1. anything but 2. nothing but 3. without 4. out of 8. He was so drunk that he could ( ) walk. (大阪学院大) 9. 1. all 1. able 2. unable This train doesn't stop at ( a few 3. hard 4. hardly ) station. 大阪商業大推) 2. 3. little 4. every 2. few 12. " Can 10. The latest model of this mobile phone is ( 1. not seldom 3. all not 11. Before I watched the documentary, I knew ( 1. little à you come to the party tonight?" "( 1. Yes, I can ) easy to use. (獨協大) 2. not necessarily 4. ever not 3. seldom ) about life under the sea. 4. hardly (東京工科大) ). I have a lot of homework." (拓殖大) 2. Yes, I do 3. No, I'm afraid not 13. Japan has ( 1. a little 2. few 4. No, I hope not ) oil and therefore is almost entirely dependent on imports. (センター) 3. little 4. small

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

どなたかわかる方おられませんかね。

2. 電子の内部状態を考察するため、 次の交換関係を満たすエルミート演算子 S1, S2 S3 を考える: [SS2]=iS3 [S2,Sa]=iS1 [S3.Si]=iS2. (1) S2 = S} + S2 + S7は任意のSi (i=1,2,3) と可換であることを示せ。 (2) St:= S1 ±iS2(複合同順) とおくとき、 次の交換関係を示せ: [S3, St] = ±S土 [S+,S_] = 2.S3. (3) |+) を Ss+) = -+), S+|+) = 0 を満たす S3 の固有状態とする。 この状態 (+) は の固有状態 となることを示しその固有値を求めよ。 (4) |-> を |-) := S_+〉 で定義する。 この状態 |-> は S3との同時固有状態となることを示しそれ らの固有値を求めよ。 またS_|-> = 0 を証明せよ。 (5)以上のような演算子と状態の組が2種類あるような合成系を考える: {${",|a}(1)}== }i=1,2,3,a=11 {S(2),\3)(2)}i=1.2.3.83=±ただし、S^^) と S(2) は全て可換であるとする。この合成系における任意 の状態は、(a) (1) (3) (2) (0, 3=±) の4種類の基底ベクトルで表され、 合成されたスピン演算子 SiS(1) + S(2) (i=1,2,3) はこの合成系の状態に Sila)(1)(3)(2) = (${1/(a)(1)(3)(2) +a)(1)(S{(2)(3) (2)) のように作用する。 この合成系における S3, 32 の同時固有状態を上記の4種類の基底ベクトルの 線型結合で表し、それぞれの固有値を求めよ。 ただし規格化は行わなくてもよい。

回答募集中 回答数: 0