学年

教科

質問の種類

物理 大学生・専門学校生・社会人

高校レベルの物理の問題です。 答えは出したのですが、解答と合わなかったので最後の問題の解き方を教えてください。

空気抵抗とは空気との接触により運動を妨げようとする力のことであり、運動している物体の速さ (速さの1乗) に比例する粘性抵抗と速 さの2乗に比例する圧力抵抗がある。 雨が圧力抵抗のみを受けながら鉛直下向きに落下する様子を考える。 圧力抵抗の比例定数を重 力加速度の大きさをg [m/s²]として以下の問に答えよ。 V 問31 鉛直下向きを正として雨の加速度をa [m/s'] としたとき、 速さ [m/s]で落下している雨滴の運動方程式はどのように記述され るか。 適切なものを1つ選べ [31] ① ma = mg + kv² (2) ma=-kv (3) ma = -kv² (6) ma=mg- ・kv (7) ma = mg-kv² ⑧ ma-mg 問32 比例定数kの単位はSI単位でどのように表されるか。 適切なものを1つ選べ。 [32] ① N·m ②N・s ③kg·m ⑥ N/m ⑦ N/s ⑧kg/m ①kmg mg k ② 月 33 雨滴は地表付近では等速度運動をする。 そのときの速度 (終端速度) Pt [m/s] として適切なものはどれか。 1つ選べ。 [33] mg -1 (半径に反比例) img k 5 1 (半径の1乗に比例) ④kg's ⑨kg/s 1km g 30 (半径に関わらず一定) 4 ⑧ 0 34 圧力抵抗の比例定数kはp を空気の密度、S を物体の断面積として、以下の関係がある。 x=2/cos CpS 4 ma = kv 9 ma = mg - 12/1 (半径の平方根に反比例) ⑤m/s² ⑩ 単位無し ここで、Cは物体の形状に依存する係数であり、 球の場合はおよそ 0.5 となる。 雨滴の形状が球だとして、終端速度は雨滴の半径の何 乗に比例するか。 適切なものを1つ選べ。 [34] ⑥⑥/12 (半径の平方根に比例 62 (半径の2乗に比例) ⑤ ma=kv² 10ma = mg + kv kv²=mg V = long fals い JAL = der²tu Img_ 11 4mg erin 4mg en F√ √

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

この問題の[4-1](1)についてですが示すまでの理解はできるんですが三角不等式を用いて示すっていうのがよく分からないです💦 ここはどういう感じの証明を書けばいいのでしょうか? また、他の問題もどうやって解くのか教えてほしいです! よろしくお願いします🙇‍♂️

[4-1] {an}neN>{bn}neN CR, a,be R, と仮定し,0に対し、 をみたす Ne, Ne∈Nが与えられているとする. このとき,次を示せ . (1) |6| ≤ 1 + |6| for all n∈Nf.. (Hint. bn= (bm-b) +6 に対して三角不等式を用いよ) THE (2)>0 に対し, 61 (E) = 1+ |a|+|b| と、 Jan - all ≤efor alline N, 16-6 ≤e for all neNA. (3) (2) において ana, bnb asn→∞ (従って, |0| ≤1+|6|,|0-al≤e1 (c), 10-bel (e) for all n ∈NN.. (従って, anbabasn→∞ が成り立つ.) (3) (2) において, 1 on lanbn-abl≤lan-all bnl + |al|bn-b|≤e for all ne NN. E = jare. >0,Ne=max{N1, Na(e), Na(e)} EN とおく [4-2] [41] において, {bn}neN CR\{0}, b ∈ R\{0} とするとき, ([4-1] の (前提の)記 号の下で)次を示せ . (1) Eo= = 10/11 > >0とおくと befor alline No. (Hint. b= (b-bm) +6m に対して三角不等式を用いよ.) (2)>0に対し,1 (€)=260,Ne=max { Neo, Na(e)}EN とおくと, 1 ≤ —, |b₁-b| ≤ €₁(e) for all n € N₁₂. NN・ |bn| E0 27/0 b Ibn-b) ≤ 1 | 12/23 - 12/10 = <e for all n E NN bn 16m-61 |b||b₂| asn→∞ が成り立つ) [bn] ≤ 1+|bl

回答募集中 回答数: 0
公務員試験 大学生・専門学校生・社会人

下線のウの直角三角形の直角を挟む2辺の長さが1cmであることは理解できたのですが、どうして片方が4分の3になるのかがわからないため、もしわかる方いましたら教えていただけると嬉しいです。 よろしくお願いいたします。

実戦問題1の解説 No.1 の解説 ア、イ、ウの面積の合計 STEP① ウの面積を求める 図Ⅱのア、イ、ウの三角形はいずれも相似で,相似比は4:3:1であ る。 アより,これらの直角三角形の直角をはさむ2辺の比は4:3であるか 3 らウの直角三角形の直角をはさむ2辺の長さは1cm 3 したがって,ウの直角三角形の面積は1×1 x 4 STEP② 面積比を利用する』 3 3 ウの面積の合計は12(16+9+1)= 8 3 cm (ウ) 5. ABCE = 1/2 ら, ア, イ,ウの三角形の面積比は4:32:12=16:9:1だから、ア, イ, 39. (ア) B -x26= 7 cm △BCE=×8×2=8[cm²〕, 1 cm (イ) 4 cm 3ア A 3 ウ 8 3 cm 4 →問題はP.284 [cm〕である。 m²となり,4が正しい。 2014ってどうして -cmである。 1 cm 4 cm No.2 の解説 △BDEの面積 STEPO 底辺が共通な三角形の面積比を利用する CCLA △BCEと△ADEは,底辺をそれぞれBC, ADと考えれば,底辺は共通で 面積比1:2はそのまま高さの比6cmを12 (2cmと4cm) に分けること になる。 同様にして △CDEと△ABE についても8cmを1:32cm と6cm) に分けることになるか X CHEROma |XV| 分かるの? -8cm 6 cm 4 cm 問題はP284 12cm、 D 16cm

未解決 回答数: 1