学年

教科

質問の種類

物理 大学生・専門学校生・社会人

大学古典力学の2質点系の問題です。 この問題の(II)で重心Gに対する相対位置ベクトルとして、解答下線部のようにおいていますが、何故こうなるのですか?分かる方がいましたら教えて下さい。

演習問題 96 2質点系の運動 (I) 右図のように xyz 座標をとる。 長さ 3r の質量の無視できる棒の両端に,それ ぞれ質量 2mmの質点を取り付けたも のが、その重心Gのまわりを一定の角 速度で回転している。 重力はy軸の負voy = の向きに働くものとし、この2質点系の y4 2m cart ro Wo m Vo. vosino- Pox VoCose ス 重心Gを, 原点から、時刻 t = 0 のときに 仰角6 (0<</2)初速度 Do = [Vox, Voy, 0]. (vo=||vo||) で投げ上げるものとする。 このとき、この回転しながら運動する 2質点系について、時刻におけ る (i) 全運動量P, (ii) 全運動エネルギーK, () 全角運動量Lを 求めよ。 また, (iv) この2質点系の位置エネルギーを求め、力学的 ネルギーが保存されることを示せ。 ただし, 2質点系の回転はxy 平面 内で起こるものとし、 空気抵抗は無視する。 ヒント! (i) 全運動量P=PG, (ii) 全運動エネルギーK=KG+K', (i) 全角運動量L=Lc+L' の公式通りに求める。 (iv) 位置エネルギーの基 準を zx平面にとる。 解答&解説 P=Pc=3mUG (ii) 2質 K = (KG ここ KG= 質量 重心 K質重Gがで対 G が, で 対 Vol (速 V01 G Toz こ Vo さ V02 -v=jo =[var-gt+v 以 G (3m) (i) 2質点系の全運動量Pは,全質量 3m が集中したと考えたときの重心Gの運動 量 Pc に等しい。 重心Gには,重力に よる加速度g = [0,-g, 0] が生じるので, その速度UGx成分は, Per PacOS (一定成分は, Voy = - gt+ vosino となる。 t = 0 のとき Poy= Posin より ∴Uc=rc=[vocose, -gt + vasin0, 0] ……① より, P=Pc=3mUc=3m [vocoso, gt + vesin 0, 0] となる。 K 162

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

高校数学のことで質問です🙋 赤線で囲んだ中で垂直な直線を求めていると思いますが、その過程でどのような考え方を用いて導かれたのかが分かりません。 よろしくお願いします🙇

標を媒介変数 また,点Pは第1象限の点であるから,媒介変数の値の範囲に注意して 積Sのとりうる値の範囲を考える。 の式に代入す 解答 条件から,P(acoso, bsine) (0<< )と表される。 π 点Pにおける接線の方程式は acos o bsin x+ a² -y=1 62 すなわち (bcosθ)x+(asin0)y=ab ①1) と表される。(*) これが点Pを通るとき ①に垂直な直線は, (asin0)x- (bcos0)y=c (cは定数) casino・acoso-bcose・bsino =(a2-b2)sinOcos O よって, 点P における法線の方程式は 5/ bsine 0 R (*) 2直線が FAOqx-py+r= 直である。 なお,点(x 直線 px+g_ 直線の方 9-I + (asino)x-(bcose)y=(a-b2)sin Acose ②において,y=0, x=0 とそれぞれおくことにより (Sa²-b² 2-62 x= より ゆえに ゆえに a2-62 -cos 0, y=- -sinė a b Q(a-be cose, 0), R(0, db sino) Q(22-62 a ここで, 0<b<a, sin>0, cos0 >0より, b -sin0 < 0 であるから ...... ② [9(x-x1) このことを いてもよい。 ◄62<a² a²-b² a²-6² cos 0>0, - a b S= =1/2OQOR= (A2-62)2 1 a²-b2 a²- cos 0.. sino 2 a b OR-b (a2-62)2 Gaian-00-A8-A0=80= = -sino coso= -sin20 sin Acoso 2ab 4ab 0<<1より、0<20<πであるから π 0<sin 20≦1 20=す ときSは最 2 (a²-b²)² したがって 0<S≤ 4ab 練習 実数x, y が 2x2+3y=1 を満たすとき, x2 -y'+xyの最大値と最-

解決済み 回答数: 1